佳木斯教育学院学报
佳木斯教育學院學報
가목사교육학원학보
JOURNAL OF JUAMJUSI EDUCATION INSTITUTE
2014年
6期
5-6
,共2页
密度泛函理论%电子结构%态密度%能带结构%磁性质
密度汎函理論%電子結構%態密度%能帶結構%磁性質
밀도범함이론%전자결구%태밀도%능대결구%자성질
density functional theory%electronic structure%density of state%band structure%magnetic properties
本论文选择目前研究较少的ZnO立方闪锌矿结构,基于密度泛涵理论的超软赝势法(USPP),结合局域密度近似(LDA),应用Material Studio5.5软件采用LDA+U方法进行计算。计算本征态下ZnO(1*1*1,2*1*1,2*2*1不同超晶胞)的电子态密度,能带结构,分析得出本征态ZnO的总态密度价带主要由Zn的3d和O的2p轨道电子组成,验证了靠近费米能级附近处的价带。计算Co替代立方结构ZnO的Zn的态密度和能带结构,并与本征态下ZnO的态密度和能带结构做比较,发现掺杂后电子态密度无较大变化,导带在Co掺杂浓度为25%时最宽即导电性最强,禁带宽度在掺杂后变窄。由实验得出的Zn1-xCoxO的磁化强度随温度和磁场强度的变化,绘制不同掺杂浓度样品的M-T和M-H曲线,讨论材料的磁化性质,并结合电子结构计算结果。
本論文選擇目前研究較少的ZnO立方閃鋅礦結構,基于密度汎涵理論的超軟贗勢法(USPP),結閤跼域密度近似(LDA),應用Material Studio5.5軟件採用LDA+U方法進行計算。計算本徵態下ZnO(1*1*1,2*1*1,2*2*1不同超晶胞)的電子態密度,能帶結構,分析得齣本徵態ZnO的總態密度價帶主要由Zn的3d和O的2p軌道電子組成,驗證瞭靠近費米能級附近處的價帶。計算Co替代立方結構ZnO的Zn的態密度和能帶結構,併與本徵態下ZnO的態密度和能帶結構做比較,髮現摻雜後電子態密度無較大變化,導帶在Co摻雜濃度為25%時最寬即導電性最彊,禁帶寬度在摻雜後變窄。由實驗得齣的Zn1-xCoxO的磁化彊度隨溫度和磁場彊度的變化,繪製不同摻雜濃度樣品的M-T和M-H麯線,討論材料的磁化性質,併結閤電子結構計算結果。
본논문선택목전연구교소적ZnO립방섬자광결구,기우밀도범함이론적초연안세법(USPP),결합국역밀도근사(LDA),응용Material Studio5.5연건채용LDA+U방법진행계산。계산본정태하ZnO(1*1*1,2*1*1,2*2*1불동초정포)적전자태밀도,능대결구,분석득출본정태ZnO적총태밀도개대주요유Zn적3d화O적2p궤도전자조성,험증료고근비미능급부근처적개대。계산Co체대립방결구ZnO적Zn적태밀도화능대결구,병여본정태하ZnO적태밀도화능대결구주비교,발현참잡후전자태밀도무교대변화,도대재Co참잡농도위25%시최관즉도전성최강,금대관도재참잡후변착。유실험득출적Zn1-xCoxO적자화강도수온도화자장강도적변화,회제불동참잡농도양품적M-T화M-H곡선,토론재료적자화성질,병결합전자결구계산결과。
This paper choose the ZnO cubic zinc blende structure, based on ultra soft pseudopotential method density functional theory (USPP), using the local density approximation (LDA), the application of Material Studio5.5 software is calculated with LDA+U method. Calculating the eigenstates of ZnO (1*1*1, 2*1*1, 2*2*1 supercell) of the electronic density of States, energy band structure, analyzes the total density of states of valence band eigenstates of ZnO is mainly composed of 2p orbital electron Zn 3D and the composition of O, near the Fermi level is verified in the vicinity of the valence band. The density of states calculated Co alternative cubic structure of ZnO Zn and the band structure, and density of eigenstates of the ZnO and the band structure is compared, found that after doping electronic density of states have no obvious change, the conduction band in the Co doping concentration is 25%of the width of the conductive strongest, narrow band width in doping. By magnetization experiments of Zn1-xCoxO with temperature and the variation of magnetic field intensity, drawing samples doped with different concentrations of M-T and M-H curve, discusses the magnetic properties of materials, the calculation results combined with the electronic structure.