通信学报
通信學報
통신학보
JOURNAL OF CHINA INSTITUTE OF COMMUNICATIONS
2014年
3期
116-123
,共8页
吴祖峰%梁棋%刘峤%秦志光
吳祖峰%樑棋%劉嶠%秦誌光
오조봉%량기%류교%진지광
链路预测%社会网络分析%AdaBoost算法%推荐系统%机器学习
鏈路預測%社會網絡分析%AdaBoost算法%推薦繫統%機器學習
련로예측%사회망락분석%AdaBoost산법%추천계통%궤기학습
link prediction%social network analysis%AdaBoost algorithm%recommended system%machine learning
针对当前主流的基于网络拓扑结构的链路预测算法普遍存在召回率较低的问题,研究发现一些算法输出的结果中部分正确结果具有互补性,据此采用基于Boosting的集成学习方法对其进行改进。按照网络中节点之间是否存在链接关系,将链路预测问题定义为二分类问题,进一步遵循算法互补的原则选择若干具有代表性的链路预测算法作为弱分类器,基于AdaBoost算法提出并实现了一个新型链路预测算法。在arXiv论文合作网络和电子邮件网络等真实数据集上的实验结果表明,该算法的准确率以及召回率表现均显著优于当前的主流算法。
針對噹前主流的基于網絡拓撲結構的鏈路預測算法普遍存在召迴率較低的問題,研究髮現一些算法輸齣的結果中部分正確結果具有互補性,據此採用基于Boosting的集成學習方法對其進行改進。按照網絡中節點之間是否存在鏈接關繫,將鏈路預測問題定義為二分類問題,進一步遵循算法互補的原則選擇若榦具有代錶性的鏈路預測算法作為弱分類器,基于AdaBoost算法提齣併實現瞭一箇新型鏈路預測算法。在arXiv論文閤作網絡和電子郵件網絡等真實數據集上的實驗結果錶明,該算法的準確率以及召迴率錶現均顯著優于噹前的主流算法。
침대당전주류적기우망락탁복결구적련로예측산법보편존재소회솔교저적문제,연구발현일사산법수출적결과중부분정학결과구유호보성,거차채용기우Boosting적집성학습방법대기진행개진。안조망락중절점지간시부존재련접관계,장련로예측문제정의위이분류문제,진일보준순산법호보적원칙선택약간구유대표성적련로예측산법작위약분류기,기우AdaBoost산법제출병실현료일개신형련로예측산법。재arXiv논문합작망락화전자유건망락등진실수거집상적실험결과표명,해산법적준학솔이급소회솔표현균현저우우당전적주류산법。
The mainstream of current link prediction algorithm based on network topology structure generally have the problem of low efficiency of recalls. Study found that the correct results from some of the link prediction algorithms are complementary, accordingly, the Boosting method was considered to improve it. According to whether there is a link re-lationship between the nodes, the problem was divided into two categories, thus the link prediction algorithm as a two classification problem was defined. Furthermore, the algorithm complementary principle to select a number of represent-ative link prediction algorithms as weak classifiers was followed, and a novel link prediction algorithm based on the AdaBoost algorithm was come up. The experimental results on the data from real dataset like the arXiv paper cooperation network and E-mail network show that, the novel algorithm has a better accuracy than the current mainstream algorithms.