燕山大学学报
燕山大學學報
연산대학학보
JOURNAL OF YANSHAN UNIVERSITY
2014年
1期
41-48
,共8页
手势识别%特征联合%偏最小二乘法%梯度方向直方图%局部二值模式
手勢識彆%特徵聯閤%偏最小二乘法%梯度方嚮直方圖%跼部二值模式
수세식별%특정연합%편최소이승법%제도방향직방도%국부이치모식
gesture recognition%feature combination%partial least squares%histograms of oriented gradients%local binary patterns
针对以往手势识别研究中更关注识别率而弱化实时性的情况,首次将偏最小二乘降维思想引入手势识别领域,提出一种基于特征联合和偏最小二乘降维的手势识别方法。首先进行手势分割,在此基础上提取手势样本的梯度方向直方图和局部二值模式特征,并将二者进行联合。然后采用偏最小二乘法对手势联合特征进行降维,并将降维后的手势训练样本特征输入到支持向量机中进行分类训练。最后用训练好的支持向量机对降维后的手势测试样本进行识别测试。基于Jochen Triesch手势库及自制手势库的实验结果表明,同已有方法相比,本文所提方法在取得较高手势识别率的同时也取得了较好的实时性。
針對以往手勢識彆研究中更關註識彆率而弱化實時性的情況,首次將偏最小二乘降維思想引入手勢識彆領域,提齣一種基于特徵聯閤和偏最小二乘降維的手勢識彆方法。首先進行手勢分割,在此基礎上提取手勢樣本的梯度方嚮直方圖和跼部二值模式特徵,併將二者進行聯閤。然後採用偏最小二乘法對手勢聯閤特徵進行降維,併將降維後的手勢訓練樣本特徵輸入到支持嚮量機中進行分類訓練。最後用訓練好的支持嚮量機對降維後的手勢測試樣本進行識彆測試。基于Jochen Triesch手勢庫及自製手勢庫的實驗結果錶明,同已有方法相比,本文所提方法在取得較高手勢識彆率的同時也取得瞭較好的實時性。
침대이왕수세식별연구중경관주식별솔이약화실시성적정황,수차장편최소이승강유사상인입수세식별영역,제출일충기우특정연합화편최소이승강유적수세식별방법。수선진행수세분할,재차기출상제취수세양본적제도방향직방도화국부이치모식특정,병장이자진행연합。연후채용편최소이승법대수세연합특정진행강유,병장강유후적수세훈련양본특정수입도지지향량궤중진행분류훈련。최후용훈련호적지지향량궤대강유후적수세측시양본진행식별측시。기우Jochen Triesch수세고급자제수세고적실험결과표명,동이유방법상비,본문소제방법재취득교고수세식별솔적동시야취득료교호적실시성。
As it is known that the research had paid more attention to recognition rate rather than real-time performance in the past, in this paper, the idea of partial least squares dimensionality reduction is introduced to the field of gesture recognition for the first time and a novel gesture recognition approach based on partial least squares and support vector machine is proposed. Firstly, the sample features of histograms of oriented gradients and local binary patterns are extracted and combined based on gesture segmen-tation. Secondly, the partial least squares method is adopted to reduce the dimension of the combined features and the combined features after dimensionality reduction is utilized to train the support vector machine. Finally, the gesture testing samples are tested with the trained support vector machine. Experimental results based on the gestures in Jochen Triesch and self-made gesture database show, compared with the existing methods, the proposed approach can achieve better performance on both recognition rate and real-time.