红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
3期
823-827
,共5页
光子晶体光纤%多包层%有效折射率法%色散
光子晶體光纖%多包層%有效摺射率法%色散
광자정체광섬%다포층%유효절사솔법%색산
photonic crystal fiber%multi-cladding%effective index method%chromatic dispersion
为了使光子晶体光纤(PCF)在钛宝石飞秒激光器的工作波长0.80μm和光通信窗口1.55μm处获得宽的近零超平坦色散,使用了三包层六角空气孔环结构设计来代替普通的单包层结构。应用了改进的有效折射率法对该三包层PCF进行了数值模拟。结果表明:三包层PCF的色散随结构参数的微小变化而有较大的变化,因此通过对PCF结构参数的合理调节,分别实现了在0.80±0.02μm 和1.55±0.15μm波长范围内近零、平坦色散(色散范围±0.5 ps/(km·nm),色散斜率范围±0.02 ps/(km·nm2)的结构设计。这对于光通信系统及研究飞秒激光在PCF中的传输特性,拓展飞秒激光的研究和应用都具有重要意义。
為瞭使光子晶體光纖(PCF)在鈦寶石飛秒激光器的工作波長0.80μm和光通信窗口1.55μm處穫得寬的近零超平坦色散,使用瞭三包層六角空氣孔環結構設計來代替普通的單包層結構。應用瞭改進的有效摺射率法對該三包層PCF進行瞭數值模擬。結果錶明:三包層PCF的色散隨結構參數的微小變化而有較大的變化,因此通過對PCF結構參數的閤理調節,分彆實現瞭在0.80±0.02μm 和1.55±0.15μm波長範圍內近零、平坦色散(色散範圍±0.5 ps/(km·nm),色散斜率範圍±0.02 ps/(km·nm2)的結構設計。這對于光通信繫統及研究飛秒激光在PCF中的傳輸特性,拓展飛秒激光的研究和應用都具有重要意義。
위료사광자정체광섬(PCF)재태보석비초격광기적공작파장0.80μm화광통신창구1.55μm처획득관적근령초평탄색산,사용료삼포층륙각공기공배결구설계래대체보통적단포층결구。응용료개진적유효절사솔법대해삼포층PCF진행료수치모의。결과표명:삼포층PCF적색산수결구삼수적미소변화이유교대적변화,인차통과대PCF결구삼수적합리조절,분별실현료재0.80±0.02μm 화1.55±0.15μm파장범위내근령、평탄색산(색산범위±0.5 ps/(km·nm),색산사솔범위±0.02 ps/(km·nm2)적결구설계。저대우광통신계통급연구비초격광재PCF중적전수특성,탁전비초격광적연구화응용도구유중요의의。
In order to obtain the near-zero flattened dispersion at the wavelengths of 0.80μm and 1.55μm, at which the Ti: Sapphire femtosecond laser working wavelength and the optical communication window center, respectively, for the photon crystal fiber (PCF), we used the structural design of a triple-cladding PCF with the hexangular air-hole loop arrangement instead of the general mono-cladding one. Using the improved effective refraction index method on this triple-cladding PCF to perform the numerical simulation, we achieved satisfying results. The numerical simulation shows that the dispersion of this type of PCF changes apparently with small variations of the structural parameters, and therefore the structural designing, that leads to a near-zero(the dispersion range of ±0.5 ps/(km·nm) and flattened (the dispersion slope range of ±0.02 ps/(km·nm2) dispersion property at the wavelength ranges of 0.80 ±0.02μm and 1.55±0.15μm, respectively, is actualized through adjusting reasonably the PCF structural parameters. This result may play an important role on studying the optical communication system and femtosecond laser transmission characteristics in the PCFs to extend its applications.