吉林化工学院学报
吉林化工學院學報
길림화공학원학보
JOURNAL OF JILIN INSTITUTE OF CHEMICAL TECHNOLOGY
2012年
3期
77-79
,共3页
相对2-仿紧%相对可数1-仿紧%相对几乎仿紧
相對2-倣緊%相對可數1-倣緊%相對幾乎倣緊
상대2-방긴%상대가수1-방긴%상대궤호방긴
2-Relative paracompact%1-Relative countably paracompact%Relative nearly paracompact
对相对2-仿紧,相对可数1-仿紧,相对几乎仿紧等空间进行了讨论,得出如下结果:拓扑空间为相对仿紧子空间,则这个拓扑空间为相对几乎仿紧的;拓扑空间的子集在拓扑空间中正则,则该子集为拓扑空间的正则子空间;拓扑空间的仿紧子空间是正则的,则该仿紧子空间是正则子空间;拓扑空间的仿紧子空间是的,则仿紧子空间是正则子空间,是正规的,也是完全正则的;拓扑空间的子集是仿紧的当且仅当这个子集由拓扑空间中开集构成的开覆盖构成的任一开覆盖都有子集的开覆盖是拓扑空间中开覆盖的在子集中的局部有限开加细;一个拓扑空间是相对的开闭子空间,如果这个拓扑空间是相对2-仿紧的,则这个拓扑空间是相对仿紧子集;拓扑空间的一个既开又闭子集在该拓扑空间中是2-仿紧的,则这个既开又闭子集是①拓扑空间的正则子空间,子空间②拓扑空间的正则子空间,子空间③拓扑空间的完全正则子空间,子空间.
對相對2-倣緊,相對可數1-倣緊,相對幾乎倣緊等空間進行瞭討論,得齣如下結果:拓撲空間為相對倣緊子空間,則這箇拓撲空間為相對幾乎倣緊的;拓撲空間的子集在拓撲空間中正則,則該子集為拓撲空間的正則子空間;拓撲空間的倣緊子空間是正則的,則該倣緊子空間是正則子空間;拓撲空間的倣緊子空間是的,則倣緊子空間是正則子空間,是正規的,也是完全正則的;拓撲空間的子集是倣緊的噹且僅噹這箇子集由拓撲空間中開集構成的開覆蓋構成的任一開覆蓋都有子集的開覆蓋是拓撲空間中開覆蓋的在子集中的跼部有限開加細;一箇拓撲空間是相對的開閉子空間,如果這箇拓撲空間是相對2-倣緊的,則這箇拓撲空間是相對倣緊子集;拓撲空間的一箇既開又閉子集在該拓撲空間中是2-倣緊的,則這箇既開又閉子集是①拓撲空間的正則子空間,子空間②拓撲空間的正則子空間,子空間③拓撲空間的完全正則子空間,子空間.
대상대2-방긴,상대가수1-방긴,상대궤호방긴등공간진행료토론,득출여하결과:탁복공간위상대방긴자공간,칙저개탁복공간위상대궤호방긴적;탁복공간적자집재탁복공간중정칙,칙해자집위탁복공간적정칙자공간;탁복공간적방긴자공간시정칙적,칙해방긴자공간시정칙자공간;탁복공간적방긴자공간시적,칙방긴자공간시정칙자공간,시정규적,야시완전정칙적;탁복공간적자집시방긴적당차부당저개자집유탁복공간중개집구성적개복개구성적임일개복개도유자집적개복개시탁복공간중개복개적재자집중적국부유한개가세;일개탁복공간시상대적개폐자공간,여과저개탁복공간시상대2-방긴적,칙저개탁복공간시상대방긴자집;탁복공간적일개기개우폐자집재해탁복공간중시2-방긴적,칙저개기개우폐자집시①탁복공간적정칙자공간,자공간②탁복공간적정칙자공간,자공간③탁복공간적완전정칙자공간,자공간.
The space of 2-Relative paracompact,1-Relative countably paracompact and Relative nearly paracompact are discussed.The results obtained are as follows:If the topological space is relative paracompact subspaces,then the topological space is relative nearly paracompact space;If subsets of a topological space is regular in the topological space,then the subset as the canonical subspace in topology space;If the paracompact subspaces of Topological space is regular,then the paracompact subspaces is canonical subspace;If the paracompact subspaces of topological space is T2,then the paracompact subspaces is canonical subspace,is regular subspace,and also is completely regular subspace.The subsets of a topological space is paracompact if and only if this subset is a topological space open cover in a subset of locally finite open refinement;A topological space is relatively open and closed subspace,If the topological space is 2-relative paracompact,then the topological space is relative paracompact subset.A both open and closed subsets of topological space is 2-paracompact,then this both open and closed subsets is ① the canonical subspace of the topological space,T3 subspace;② the canonical subspace of the topological space,subspace;③ the completely regular subspace of topological space,T31 2subspace.