重庆工商大学学报:自然科学版
重慶工商大學學報:自然科學版
중경공상대학학보:자연과학판
Journal of Chongqing Technology and Business University:Natural Science Edition
2012年
4期
1-6
,共6页
非零数码%等价无穷小%跳跃式单增
非零數碼%等價無窮小%跳躍式單增
비령수마%등개무궁소%도약식단증
nonzero number%equivalent infinitesimal%jump-style monotonically increasing
猜想原本为:当n≥3,x^n+Y^n=z^n,z〉0,Y〉0,z〉0没有整数解.将猜想变为:设n,Y,z均为正整数,且n≥3,Y〈z,则方程z^n+^n“-z^n=0中的x为非整数,给予证明.
猜想原本為:噹n≥3,x^n+Y^n=z^n,z〉0,Y〉0,z〉0沒有整數解.將猜想變為:設n,Y,z均為正整數,且n≥3,Y〈z,則方程z^n+^n“-z^n=0中的x為非整數,給予證明.
시상원본위:당n≥3,x^n+Y^n=z^n,z〉0,Y〉0,z〉0몰유정수해.장시상변위:설n,Y,z균위정정수,차n≥3,Y〈z,칙방정z^n+^n“-z^n=0중적x위비정수,급여증명.
Previous conjecture was that, when n≥3, the equationx^n+Y^n=z^nxn + y~ = zn'x 〉 0, y solution. This paper changes the conjecture as,let n,y and z are all positive integers, and equation z^n +y^n -x^n =O,x is not integer and then this equation has been proved. 〉O,z 〉0,had no integer n ≥ 3, y 〈 z, then in the