农业科学与技术:英文版
農業科學與技術:英文版
농업과학여기술:영문판
Agricultural Science & Technology
2012年
4期
838-842
,共5页
王彬武%周卫军%马苏%刘少坤%于良艺%郑超%王金国
王彬武%週衛軍%馬囌%劉少坤%于良藝%鄭超%王金國
왕빈무%주위군%마소%류소곤%우량예%정초%왕금국
回归克里格法%MODIS%土壤有机质%空间预测
迴歸剋裏格法%MODIS%土壤有機質%空間預測
회귀극리격법%MODIS%토양유궤질%공간예측
Regression-kriging%MODIS%Soil organic matter%Spatial prediction
[目的]本研究以湖南省石门县为例,采用普通克里格和基于MODIS和DEM数据的回归克里格方法,结合有限个采样数据对该区有机质进行空间预测,并进行对比分析。[方法]运用由地形参数(由DEM派生得到)、归一化植被指数(NDVI)以及由MODIS派生得到的地表温度(LST)等指标进行空间模拟,然后通过平均误差(ME)和均方根误差(RMSE)验证精度,数据的描述性统计及转换均通过软件实现。[结果]结果表明在有限个采样数据下,结合多元遥感数据的回归克里格方法优于普通克里格法,回归克里格法的平均误差和均方根误差均低于普通克里格法,相对提高值为6.03%。[结论]在低山丘陵区,运用MODIS数据及其他遥感数据对土壤有机质进行空间预测具有较好的效果。
[目的]本研究以湖南省石門縣為例,採用普通剋裏格和基于MODIS和DEM數據的迴歸剋裏格方法,結閤有限箇採樣數據對該區有機質進行空間預測,併進行對比分析。[方法]運用由地形參數(由DEM派生得到)、歸一化植被指數(NDVI)以及由MODIS派生得到的地錶溫度(LST)等指標進行空間模擬,然後通過平均誤差(ME)和均方根誤差(RMSE)驗證精度,數據的描述性統計及轉換均通過軟件實現。[結果]結果錶明在有限箇採樣數據下,結閤多元遙感數據的迴歸剋裏格方法優于普通剋裏格法,迴歸剋裏格法的平均誤差和均方根誤差均低于普通剋裏格法,相對提高值為6.03%。[結論]在低山丘陵區,運用MODIS數據及其他遙感數據對土壤有機質進行空間預測具有較好的效果。
[목적]본연구이호남성석문현위례,채용보통극리격화기우MODIS화DEM수거적회귀극리격방법,결합유한개채양수거대해구유궤질진행공간예측,병진행대비분석。[방법]운용유지형삼수(유DEM파생득도)、귀일화식피지수(NDVI)이급유MODIS파생득도적지표온도(LST)등지표진행공간모의,연후통과평균오차(ME)화균방근오차(RMSE)험증정도,수거적묘술성통계급전환균통과연건실현。[결과]결과표명재유한개채양수거하,결합다원요감수거적회귀극리격방법우우보통극리격법,회귀극리격법적평균오차화균방근오차균저우보통극리격법,상대제고치위6.03%。[결론]재저산구릉구,운용MODIS수거급기타요감수거대토양유궤질진행공간예측구유교호적효과。
[Objective] The objective of this project was to evaluate and compare spa- tial estimation accuracy by ordinary kriging and regression kriging with MODIS data, predicting SOM contents using limited available data in Shimen County, Hunan Province, China. [Method] Terrain parameters (derived from DEM) and Normalized differential vegetation index (NDVI), Land surface temperature (LST) (derived from MODIS data) were used as auxiliary data to predict the SOM spatial distribution. The mean error (ME) and mean square error (RMSE) were adopted to validate the SOM prediction accuracy. The descriptive statistics and data transformation were conducted by using computer technology. [Result] Regression kriging with terrain and remotely sensed data was superior to ordinary kriging in the case of limited available samples; even the linear relationship between environmental variables and SOM content was moderate. The accuracy assessment showed that the regression kriging method combining with environmental factors obtained a lower mean predication error and root mean square prediction error. The relative improvement was 6.03% compared with ordinary kriging. [Conclusion] Remotely sensed data such as MODIS im- age have the potential as useful auxiliary variables for improving the precision and reliability of SOM prediction in the hilly regions.