中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2012年
11期
28-34
,共7页
陈友良%孙奉仲%高明%赵元宾%史月涛
陳友良%孫奉仲%高明%趙元賓%史月濤
진우량%손봉중%고명%조원빈%사월도
冷却塔%侧风%十字隔墙%热力性能%热态实验
冷卻塔%側風%十字隔牆%熱力性能%熱態實驗
냉각탑%측풍%십자격장%열력성능%열태실험
cooling tower%crosswinds%cross wall%thermalperformance%hot model test
基于热态模型实验,研究了侧风工况下不同形状十字隔墙在不同安装角度下对自然通风逆流湿式冷却塔热力性能的影响。结果表明:存在-临界风速值,当侧风速度低于此值时,冷却塔性能随风速增大而逐渐降低;当风速高于此值时,冷却性能又随风速增大而逐渐恢复。当循环水量和水温增大时,临界风速也会随之增大。安装十字隔墙可以消除侧风对冷却塔性能的不利影响。低风速下,实型和孔隙十字隔墙均可改善冷却塔进风,提高冷却塔热力性能,实型墙效果更好;高风速下,孔隙十字隔墙效果反而优于实型墙。在所研究风速范围内,安装角度为0°时十字隔墙的效果要好于45°时的效果;在风速较高时,45°十字隔墙甚至会降低冷却塔的性能。
基于熱態模型實驗,研究瞭側風工況下不同形狀十字隔牆在不同安裝角度下對自然通風逆流濕式冷卻塔熱力性能的影響。結果錶明:存在-臨界風速值,噹側風速度低于此值時,冷卻塔性能隨風速增大而逐漸降低;噹風速高于此值時,冷卻性能又隨風速增大而逐漸恢複。噹循環水量和水溫增大時,臨界風速也會隨之增大。安裝十字隔牆可以消除側風對冷卻塔性能的不利影響。低風速下,實型和孔隙十字隔牆均可改善冷卻塔進風,提高冷卻塔熱力性能,實型牆效果更好;高風速下,孔隙十字隔牆效果反而優于實型牆。在所研究風速範圍內,安裝角度為0°時十字隔牆的效果要好于45°時的效果;在風速較高時,45°十字隔牆甚至會降低冷卻塔的性能。
기우열태모형실험,연구료측풍공황하불동형상십자격장재불동안장각도하대자연통풍역류습식냉각탑열력성능적영향。결과표명:존재-림계풍속치,당측풍속도저우차치시,냉각탑성능수풍속증대이축점강저;당풍속고우차치시,냉각성능우수풍속증대이축점회복。당순배수량화수온증대시,림계풍속야회수지증대。안장십자격장가이소제측풍대냉각탑성능적불리영향。저풍속하,실형화공극십자격장균가개선냉각탑진풍,제고냉각탑열력성능,실형장효과경호;고풍속하,공극십자격장효과반이우우실형장。재소연구풍속범위내,안장각도위0°시십자격장적효과요호우45°시적효과;재풍속교고시,45°십자격장심지회강저냉각탑적성능。
The effect of cross walls on the thermal performance of natural draft wet cooling towers (NDWCT) under crosswind conditions was investigated experimentally. Results from the hot model test demonstrate that crosswinds have an adverse effect on the NDWCT performance at common velocities, but the performance has a recovery at high crosswind velocities. When the circulating water flow rate and the inlet water temperature increase, the critical crosswind velocity rises accordingly, which results in the lowest NDWCT performance. Installing cross walls in the rain zone can improve the thermal performance of the NDWCT, which is dependent on the crosswind velocity, cross wall shape and setting angle. At low crosswind velocities, the solid wall leads to better NDWCT performance than the porous wall. However, the opposite effect is obtained at high crosswind velocities. At all crosswind velocities, the cross wall at a setting angle of 0° between the crosswind direction and the cross wall results in higher performance than that at a setting angle of 45°, regardless of cross wall shapes. Moreover, the cross wall at a setting angle of 45° degrades the thermal performance of the NDWCT under high crosswind conditions.