电子设计工程
電子設計工程
전자설계공정
ELECTRONIC DESIGN ENGINEERING
2012年
22期
33-36
,共4页
Hadoop平台%任务调度%遗传算法%加速进化策略
Hadoop平檯%任務調度%遺傳算法%加速進化策略
Hadoop평태%임무조도%유전산법%가속진화책략
hadoop platform%task scheduling%genetic algorithm%evolution acceleration strategy
针对Hadoop0.20.0中任务调度算法存在的不足,提出一种基于改进遗传算法(IGA)的任务调度算法。IGA算法对初始化种群、交叉和变异操作进行了一些改进,并引入了最优保留策略和加速进化策略。通过仿真实验将此算法与Hadoop现有算法进行比较,实验结果表明,此算法优于Hadoop现有算法,是一种有效的任务调度算法。
針對Hadoop0.20.0中任務調度算法存在的不足,提齣一種基于改進遺傳算法(IGA)的任務調度算法。IGA算法對初始化種群、交扠和變異操作進行瞭一些改進,併引入瞭最優保留策略和加速進化策略。通過倣真實驗將此算法與Hadoop現有算法進行比較,實驗結果錶明,此算法優于Hadoop現有算法,是一種有效的任務調度算法。
침대Hadoop0.20.0중임무조도산법존재적불족,제출일충기우개진유전산법(IGA)적임무조도산법。IGA산법대초시화충군、교차화변이조작진행료일사개진,병인입료최우보류책략화가속진화책략。통과방진실험장차산법여Hadoop현유산법진행비교,실험결과표명,차산법우우Hadoop현유산법,시일충유효적임무조도산법。
A task scheduling algorithm based on improved genetic algorithm (IGA) was brought up for the deficiences of the task scheduling algorithms in Hadoop0.20.0. IGA algorithm improved the original colony is initialized and crossover and mutation operation, and introduces retention optimal strategy and evolution acceleration strategy. There is a contrast between IGA and existing algorithm in Hadoop through simulation experiment, and the result is: the IGA is better, it is an effective task scheduling algorithm.