火灾科学
火災科學
화재과학
FIRE SAFETY SCIENCE
2012年
3期
159-166
,共8页
亓延军%崔嵛%张和平%陈彦伟%邓蕾
亓延軍%崔崳%張和平%陳彥偉%鄧蕾
기연군%최유%장화평%진언위%산뢰
膨胀聚苯乙烯%热分解%动力学参数%反应机理%寿命
膨脹聚苯乙烯%熱分解%動力學參數%反應機理%壽命
팽창취분을희%열분해%동역학삼수%반응궤리%수명
Expanded polystyrene foam%Thermal decomposition%Kinetics parameters%Kinetic model%Lifetime
针对既有聚苯乙烯泡沫类外墙外保温系统的防火问题,在空气和氮气气氛下对非阻燃和阻燃型膨胀聚苯乙烯泡沫进行了热重分析。样品由10℃/min、20℃/min、40℃/min和50℃/min四个升温速率从室温加热至800℃。热分解动力学参数由Flynn-Wall-Ozawa(FWO)等转化率方法和多参数非线性回归方法(multivariate non-linear re-gression method)计算,结果表明六溴环十二烷(HBCD)阻燃剂可一定程度上提高EPS的热稳定性。EPS在空气和氮气气氛下热解可认为是单步反应。非阻燃聚苯乙烯泡沫在空气和氮气气氛下的热解过程可由自催化n阶反应机理描述。阻燃EPS在空气气氛下的热解机理为自催化n阶反应,在氮气气氛下则为n阶反应机理。基于动力学参数和反应机理,对聚苯乙烯泡沫在不同温度下的寿命进行了预测。
針對既有聚苯乙烯泡沫類外牆外保溫繫統的防火問題,在空氣和氮氣氣氛下對非阻燃和阻燃型膨脹聚苯乙烯泡沫進行瞭熱重分析。樣品由10℃/min、20℃/min、40℃/min和50℃/min四箇升溫速率從室溫加熱至800℃。熱分解動力學參數由Flynn-Wall-Ozawa(FWO)等轉化率方法和多參數非線性迴歸方法(multivariate non-linear re-gression method)計算,結果錶明六溴環十二烷(HBCD)阻燃劑可一定程度上提高EPS的熱穩定性。EPS在空氣和氮氣氣氛下熱解可認為是單步反應。非阻燃聚苯乙烯泡沫在空氣和氮氣氣氛下的熱解過程可由自催化n階反應機理描述。阻燃EPS在空氣氣氛下的熱解機理為自催化n階反應,在氮氣氣氛下則為n階反應機理。基于動力學參數和反應機理,對聚苯乙烯泡沫在不同溫度下的壽命進行瞭預測。
침대기유취분을희포말류외장외보온계통적방화문제,재공기화담기기분하대비조연화조연형팽창취분을희포말진행료열중분석。양품유10℃/min、20℃/min、40℃/min화50℃/min사개승온속솔종실온가열지800℃。열분해동역학삼수유Flynn-Wall-Ozawa(FWO)등전화솔방법화다삼수비선성회귀방법(multivariate non-linear re-gression method)계산,결과표명륙추배십이완(HBCD)조연제가일정정도상제고EPS적열은정성。EPS재공기화담기기분하열해가인위시단보반응。비조연취분을희포말재공기화담기기분하적열해과정가유자최화n계반응궤리묘술。조연EPS재공기기분하적열해궤리위자최화n계반응,재담기기분하칙위n계반응궤리。기우동역학삼수화반응궤리,대취분을희포말재불동온도하적수명진행료예측。
Concerning the fire protection problems of existing polystyrene foam exterior wall insulation systems, the thermo- gravimetric studies on the commercial grade non-retardant and retardant expanded polystyrene foam (EPS) were carried )ut un- der air and nitrogen atmosphere from ambient temperature to 800℃ at heating rates of 10℃/min, 20℃/min, 40℃/min and 50℃/min. The dependence of the activation energy on the conversion degree was evaluated by using the isoconversional meth- ods (FWO method). The multivariate non-linear regression method was applied for investigation of the kinetic model and the corresponding kinetic parameters. The obtained kinetics parameters reveal that the hexahromocyclododecane (HBCD) flame re- tardant can enhance the thermal stability of EPS. It can be conclude that the decomposition processes of EPS undergo a single step reaction in both air and nitrogen atmosphere. The decomposition of non-retardant EPS under air and nitrogen atmosphere can be described by nth-order reaction with autoeatalysis (Cn) kinetic model. For the retardant EPS, the decomposition process can be accurately describe by the Cn and Fn (nth-order reaction) kinetic model under air and nitrogen atmosphere, respectively. Based on the kinetics parameters and the kinetic models, the lifetime of EPS at different temperatures was predicted.