山东理工大学学报:自然科学版
山東理工大學學報:自然科學版
산동리공대학학보:자연과학판
Journal of Shandong University of Technology:Science and Technology
2012年
1期
23-25
,共3页
二次规划%支持向量机%界约束%有限记忆BFGS
二次規劃%支持嚮量機%界約束%有限記憶BFGS
이차규화%지지향량궤%계약속%유한기억BFGS
quadratic programming%support vector machines%bound constraint%limited memory BFGS
求解支持向量机大规模分类问题时,系数矩阵的存储和计算是非常困难的.借助分解技术,把问题分解成多个维数较低的二次规划问题.利用增广拉格朗日函数将子问题转化成只含有界约束的形式,再用修正子空间有限记忆BFGS方法解子问题,节省了存储空间,提高了求解效率.
求解支持嚮量機大規模分類問題時,繫數矩陣的存儲和計算是非常睏難的.藉助分解技術,把問題分解成多箇維數較低的二次規劃問題.利用增廣拉格朗日函數將子問題轉化成隻含有界約束的形式,再用脩正子空間有限記憶BFGS方法解子問題,節省瞭存儲空間,提高瞭求解效率.
구해지지향량궤대규모분류문제시,계수구진적존저화계산시비상곤난적.차조분해기술,파문제분해성다개유수교저적이차규화문제.이용증엄랍격랑일함수장자문제전화성지함유계약속적형식,재용수정자공간유한기억BFGS방법해자문제,절성료존저공간,제고료구해효솔.
The storage and computing of coefficient matrix were very difficult for solving large-scale SVMs.At each decomposition iteration,the problem was split up into smaller quadratic programming subproblems.The augmented lagrangian scheme was used to transform the subproblems into problems only with a set of bound constrains,then the subproblems were solved by modified subspace limited memory BFGS algorithm.This method could save storage space considerably and improve the efficiency.