大学数学
大學數學
대학수학
COLLEGE MATHEMATICS
2012年
5期
40-45
,共6页
填充维数%联合发散点%自相似测度
填充維數%聯閤髮散點%自相似測度
전충유수%연합발산점%자상사측도
packing dimension%mixed divergence point%self-similar measure
近年来,发散点引起了数学界的广泛关注,对单测度的发散点,前人已经作了很完备的研究,对有限多个自相似测度的联合发散点的集合,仅其豪斯多夫维数被L.Olsen研究并给出了,然而,我们对其填充维数仍一无所知,因此,本文主要研究联合发散点集合的填充维数。
近年來,髮散點引起瞭數學界的廣汎關註,對單測度的髮散點,前人已經作瞭很完備的研究,對有限多箇自相似測度的聯閤髮散點的集閤,僅其豪斯多伕維數被L.Olsen研究併給齣瞭,然而,我們對其填充維數仍一無所知,因此,本文主要研究聯閤髮散點集閤的填充維數。
근년래,발산점인기료수학계적엄범관주,대단측도적발산점,전인이경작료흔완비적연구,대유한다개자상사측도적연합발산점적집합,부기호사다부유수피L.Olsen연구병급출료,연이,아문대기전충유수잉일무소지,인차,본문주요연구연합발산점집합적전충유수。
Divergence points have recently generated an enormous interest in the mathematical literature. Previously, divergence points of a single measure have been well investigated. However, for mixed divergence points of finitely many selfsimilar measures simultaneously, only their determined by L. Olsen and nothing is known about their packing dimension. packing dimension of the set of the mixed divergence points. Hausdorff dimension In this paper, we will has been study themixed divergence points.