广西师范学院学报:自然科学版
廣西師範學院學報:自然科學版
엄서사범학원학보:자연과학판
Journal of Guangxi Teachers Education University:Natural Science Edition
2012年
2期
1-5
,共5页
二面体群%Cayley有向图%正规性
二麵體群%Cayley有嚮圖%正規性
이면체군%Cayley유향도%정규성
dihedral group%Cayley digraph%normality
称有限群G的Cayley(有向)图X是正规的,如果G的右正则表示R(G)正规于图X的全自同构群Aut(X).该文主要研究8p阶二面体群G∶=D8p=〈a,b a4p=b2=1,b-1ab=a-1〉的连通3度Cayley有向图X∶=Cay(G,S)的正规性.并证明:(1)若p=2时,Cayley(有向)图X不正规当且仅当S~{b,a,a5}和S~{b,ba,bak}(k=3,4,5,6).(2)若p为奇素数,Cayley(有向)图X不正规当且仅当S~{b,a,a2p+1}和S~{b,ba,bak}(k=2p,2p+1).
稱有限群G的Cayley(有嚮)圖X是正規的,如果G的右正則錶示R(G)正規于圖X的全自同構群Aut(X).該文主要研究8p階二麵體群G∶=D8p=〈a,b a4p=b2=1,b-1ab=a-1〉的連通3度Cayley有嚮圖X∶=Cay(G,S)的正規性.併證明:(1)若p=2時,Cayley(有嚮)圖X不正規噹且僅噹S~{b,a,a5}和S~{b,ba,bak}(k=3,4,5,6).(2)若p為奇素數,Cayley(有嚮)圖X不正規噹且僅噹S~{b,a,a2p+1}和S~{b,ba,bak}(k=2p,2p+1).
칭유한군G적Cayley(유향)도X시정규적,여과G적우정칙표시R(G)정규우도X적전자동구군Aut(X).해문주요연구8p계이면체군G∶=D8p=〈a,b a4p=b2=1,b-1ab=a-1〉적련통3도Cayley유향도X∶=Cay(G,S)적정규성.병증명:(1)약p=2시,Cayley(유향)도X불정규당차부당S~{b,a,a5}화S~{b,ba,bak}(k=3,4,5,6).(2)약p위기소수,Cayley(유향)도X불정규당차부당S~{b,a,a2p+1}화S~{b,ba,bak}(k=2p,2p+1).
A Cayley(di)graph X on a finite group G is said to be normal if the acting group R(G) of the right multiplication by G is normal in its full automorphism group.In this paper,the authors mainly research the normality of connected cubic Cayley digraphs on the 8p-order dihedral group G:=D8p=〈a,ba4p=b2=1,b-1ab=a-1〉,and then prove that all such graphs X=Cay(G,S) are non-normal if and only if S~{b,a,a2p+1} and S ~{b,ba,bak }(k=2p or 2p+1) with p being an odd prime,or S~{b,a,a5} and S~{b,ba,bak}(k=3,4,5,6) with p=2.