农业科学与技术:英文版
農業科學與技術:英文版
농업과학여기술:영문판
Agricultural Science & Technology
2012年
5期
965-968
,共4页
牛宇%蒙秋霞%张丽珍%赵婷婷%乔治军%牛伟%刘根科%冯耐红
牛宇%矇鞦霞%張麗珍%趙婷婷%喬治軍%牛偉%劉根科%馮耐紅
우우%몽추하%장려진%조정정%교치군%우위%류근과%풍내홍
近红外透射光谱%黍稷%蛋白%定标模型
近紅外透射光譜%黍稷%蛋白%定標模型
근홍외투사광보%서직%단백%정표모형
Near infrared transmittance spectroscopy%Panicum miliaceum L.%Protein%Calibration model
[目的]探索快速测定完整黍稷籽粒蛋白含量的方法。[方法]采用近红外光谱分析技术建立数学模型并进行预测,比较原始透射光谱经导数处理结合不同回归算法对模型的影响。[结果]分别经一阶和二阶导数处理后利用偏小二乘法和改进的偏小二乘法,4种方法的分析效果相近,最优的是一阶导数结合改进的偏最小二乘回归法,黍稷蛋白定标模型的定标相关系数(RSQ)为0.8806,定标标准误~(SEC)为0.3424,交互定标标准误差(SECV)为0.3751,外部预测标准误差(sEP)为0.454。[结论]以完整黍稷籽粒为样品所建立的蛋白NITS模型,可以用于黍稷蛋F勺含量的快速检测。
[目的]探索快速測定完整黍稷籽粒蛋白含量的方法。[方法]採用近紅外光譜分析技術建立數學模型併進行預測,比較原始透射光譜經導數處理結閤不同迴歸算法對模型的影響。[結果]分彆經一階和二階導數處理後利用偏小二乘法和改進的偏小二乘法,4種方法的分析效果相近,最優的是一階導數結閤改進的偏最小二乘迴歸法,黍稷蛋白定標模型的定標相關繫數(RSQ)為0.8806,定標標準誤~(SEC)為0.3424,交互定標標準誤差(SECV)為0.3751,外部預測標準誤差(sEP)為0.454。[結論]以完整黍稷籽粒為樣品所建立的蛋白NITS模型,可以用于黍稷蛋F勺含量的快速檢測。
[목적]탐색쾌속측정완정서직자립단백함량적방법。[방법]채용근홍외광보분석기술건립수학모형병진행예측,비교원시투사광보경도수처리결합불동회귀산법대모형적영향。[결과]분별경일계화이계도수처리후이용편소이승법화개진적편소이승법,4충방법적분석효과상근,최우적시일계도수결합개진적편최소이승회귀법,서직단백정표모형적정표상관계수(RSQ)위0.8806,정표표준오~(SEC)위0.3424,교호정표표준오차(SECV)위0.3751,외부예측표준오차(sEP)위0.454。[결론]이완정서직자립위양품소건립적단백NITS모형,가이용우서직단F작함량적쾌속검측。
[Objective] To explore a method for the rapid determination of protein con- tent in grains of Panicum miliaceum L. [Method] The near infrared transmittance spec- troscopy (NITS) was used to build the mathematical models for the quantitative analy- sis of protein content in the grains. Four combinations of treatment that first derivative and second derivative were respectively combined with partial least squares (PLS) and modified partial least squares (MPLS) were set to compare their effects on the original transmission spectrum. [Result] The predicting effects of the 4 combinations were similar. The optimal combination was first derivative with MPLS, in which the average determination coefficient of validation (RSQ) was 0.880 6, correlation coeffi- cient of cross validation (1-VR) was 0.857 0, standard error of calibration (SEC) was 0.342 4, standard error of cross validation (SECV) was 0.375 1, and the standard er- ror of prediction (SEP) was 0.454. [Conclusion] The constructed NITS model is a rapid way for the determination of protein content in grains of P. miliaceum.