高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2012年
7期
1736-1741
,共6页
线性场电极结构%大气压等离子体射流(APPJs)%等离子体光谱%二级光栅光谱%转动温度%等离子%体温度
線性場電極結構%大氣壓等離子體射流(APPJs)%等離子體光譜%二級光柵光譜%轉動溫度%等離子%體溫度
선성장전겁결구%대기압등리자체사류(APPJs)%등리자체광보%이급광책광보%전동온도%등리자%체온도
linear field electrodes configuration%atmospheric pressure plasma jets{APPJs)%plasma spectra%secondary grating spectrum%rotational temperature%plasma temperature
摘要:为了应用OH基团的二级光谱来诊断大气压等离子体射流(APPJs)的温度,首先采用线性场电极结构产生了氩大气压等离子体射流,利用增强型电荷耦合器件(ICCD)和三光栅光谱仪,拍摄了200-900nm波长范围内氩APPJs的光谱,并对光谱进行了辨认及分析,结果表明,除了氩原子的2p-ls(帕邢符号)跃迁谱线外,还存在一些分子基团的一级和二级光栅光谱,且其二级光谱的分辨率远高于一级光谱,其中OH(其相应跃迁为A2∑+→X2H)自由基尤为明显。然后选择OH(A。∑+→X2H)自由基的二级光谱诊断了OH自由基的转动温度(近似为等离子体射流的温度),并探讨了该温度随外施电压幅值、气体体积流量的变化,结果表明,在其他实验条件(如管径、电极间距和电极宽度)给定的情况下,氩APPJs的温度随外施电压幅值和气体体积流量的增大而都呈现先下降后上升的趋势,当外施电压幅值为10kV、气体体积流量为4L/min时,温度达到最小值348K。上述结果将为氩AP-PJs的参数调节及应用提供重要的帮助。
摘要:為瞭應用OH基糰的二級光譜來診斷大氣壓等離子體射流(APPJs)的溫度,首先採用線性場電極結構產生瞭氬大氣壓等離子體射流,利用增彊型電荷耦閤器件(ICCD)和三光柵光譜儀,拍攝瞭200-900nm波長範圍內氬APPJs的光譜,併對光譜進行瞭辨認及分析,結果錶明,除瞭氬原子的2p-ls(帕邢符號)躍遷譜線外,還存在一些分子基糰的一級和二級光柵光譜,且其二級光譜的分辨率遠高于一級光譜,其中OH(其相應躍遷為A2∑+→X2H)自由基尤為明顯。然後選擇OH(A。∑+→X2H)自由基的二級光譜診斷瞭OH自由基的轉動溫度(近似為等離子體射流的溫度),併探討瞭該溫度隨外施電壓幅值、氣體體積流量的變化,結果錶明,在其他實驗條件(如管徑、電極間距和電極寬度)給定的情況下,氬APPJs的溫度隨外施電壓幅值和氣體體積流量的增大而都呈現先下降後上升的趨勢,噹外施電壓幅值為10kV、氣體體積流量為4L/min時,溫度達到最小值348K。上述結果將為氬AP-PJs的參數調節及應用提供重要的幫助。
적요:위료응용OH기단적이급광보래진단대기압등리자체사류(APPJs)적온도,수선채용선성장전겁결구산생료아대기압등리자체사류,이용증강형전하우합기건(ICCD)화삼광책광보의,박섭료200-900nm파장범위내아APPJs적광보,병대광보진행료변인급분석,결과표명,제료아원자적2p-ls(파형부호)약천보선외,환존재일사분자기단적일급화이급광책광보,차기이급광보적분변솔원고우일급광보,기중OH(기상응약천위A2∑+→X2H)자유기우위명현。연후선택OH(A。∑+→X2H)자유기적이급광보진단료OH자유기적전동온도(근사위등리자체사류적온도),병탐토료해온도수외시전압폭치、기체체적류량적변화,결과표명,재기타실험조건(여관경、전겁간거화전겁관도)급정적정황하,아APPJs적온도수외시전압폭치화기체체적류량적증대이도정현선하강후상승적추세,당외시전압폭치위10kV、기체체적류량위4L/min시,온도체도최소치348K。상술결과장위아AP-PJs적삼수조절급응용제공중요적방조。
In order to use the secondary grating spectrum to diagnose the temperature of atmospheric pressure plasma jets (APPJs), the open condition APPJs in argon are given first by linear field electrodes configuration. Intensified charge coupled device (ICCD) and three-grating spectrometer are used to capture plasmas spectra range from 200 nm to 900 nm. Then the temperature of plasma jets are further diagnosed by using captured spectra. Identification and analysis for the spectra reveal that the argon atom spectral lines transition 2p--ls (Paschen's notes) are present. In addition, the primary and its secondary grating sPectra of some molecular radicals also appear, and resolution of the secondary grating spectrum is far higher than its primary resolution, especially for OH (A2∑+→X2H) radical. The secondary grating spectra of OH (A2∑+→X2H) radical are selected for diagnosing temperature of argon APPJs. The trend of the temperature of argon APPJs with applied voltage and gas flow velocity under fixed other conditions (quartz tube diameters, distance between electrodes, and electrodes width) are also investigated. The results indicate that argon APPJs' s temperature varying with both above parameters decreases to its minimum of 348 K then increases when the applied voltage is fixed at 10 kV and gas flow are 4 L/min, respectively.