高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2012年
7期
1661-1666
,共6页
介质阻挡放电%均匀放电%丝状放电%大气压汤森放电%介质表面浅位阱%种子电子%反常熄灭
介質阻擋放電%均勻放電%絲狀放電%大氣壓湯森放電%介質錶麵淺位阱%種子電子%反常熄滅
개질조당방전%균균방전%사상방전%대기압탕삼방전%개질표면천위정%충자전자%반상식멸
dielectric barrier discharge (DBD)%homogeneous discharge%filamentary discharge%atmosphericpressure Townsend discharge%shallow trap in dielectric surface%seed electron%extraordinary extinguish
为了实验研究大气压空气介质阻挡均匀放电的可能性,使用1.5mm以上厚度的A120s陶瓷片作为阻挡介质及1-2kHz的高压激励,在大气压3mm空气平板间隙中获得均匀放电。通过ICCD高速摄影得到的放电图像以及电流波形的分析表明这种放电是汤森放电。3mm空气间隙的稳态击穿电压仅约为5.7kV,远低于静态击穿电压11.2kv;还发现了类似氮气DBD汤森放电的“反常熄灭”现象,这两个现象表明陶瓷表面可能存在浅位阱及二次电子发射机制,这对空气汤森放电的起始和维持阶段都至关重要。另外,实验发现陶瓷厚度对空气DBD有重要影响,使用厚度〈1.5mm的陶瓷片往往无法避免丝状放电。使用2片厚度各1mm的石英玻璃替代陶瓷片在670Pa-0.1MPa都无法获得均匀放电。上述3mm空气汤森放电的原因归结于陶瓷表面独特的“浅位阱”特性以及阻挡介质限流作用的共同效果。
為瞭實驗研究大氣壓空氣介質阻擋均勻放電的可能性,使用1.5mm以上厚度的A120s陶瓷片作為阻擋介質及1-2kHz的高壓激勵,在大氣壓3mm空氣平闆間隙中穫得均勻放電。通過ICCD高速攝影得到的放電圖像以及電流波形的分析錶明這種放電是湯森放電。3mm空氣間隙的穩態擊穿電壓僅約為5.7kV,遠低于靜態擊穿電壓11.2kv;還髮現瞭類似氮氣DBD湯森放電的“反常熄滅”現象,這兩箇現象錶明陶瓷錶麵可能存在淺位阱及二次電子髮射機製,這對空氣湯森放電的起始和維持階段都至關重要。另外,實驗髮現陶瓷厚度對空氣DBD有重要影響,使用厚度〈1.5mm的陶瓷片往往無法避免絲狀放電。使用2片厚度各1mm的石英玻璃替代陶瓷片在670Pa-0.1MPa都無法穫得均勻放電。上述3mm空氣湯森放電的原因歸結于陶瓷錶麵獨特的“淺位阱”特性以及阻擋介質限流作用的共同效果。
위료실험연구대기압공기개질조당균균방전적가능성,사용1.5mm이상후도적A120s도자편작위조당개질급1-2kHz적고압격려,재대기압3mm공기평판간극중획득균균방전。통과ICCD고속섭영득도적방전도상이급전류파형적분석표명저충방전시탕삼방전。3mm공기간극적은태격천전압부약위5.7kV,원저우정태격천전압11.2kv;환발현료유사담기DBD탕삼방전적“반상식멸”현상,저량개현상표명도자표면가능존재천위정급이차전자발사궤제,저대공기탕삼방전적기시화유지계단도지관중요。령외,실험발현도자후도대공기DBD유중요영향,사용후도〈1.5mm적도자편왕왕무법피면사상방전。사용2편후도각1mm적석영파리체대도자편재670Pa-0.1MPa도무법획득균균방전。상술3mm공기탕삼방전적원인귀결우도자표면독특적“천위정”특성이급조당개질한류작용적공동효과。
In order to experimentally study the possibility of homogenous dielectric barrier discharge (DBD) in atmospheric pressure air as well as its characteristics, the homogenous DBD in 3 mm air gap was obtained at atmospheric pressure, using 1-2 kHz sinusoidal high voltage and no less than 1. 5 mm thick alumina as the dielectrics. The discharge was proven as an atmospheric pressure Townsend discharge after analyzing the 10 ns exposure high-speed photographs and the current waveform. The steady breakdown voltage for 3 mm air DBD was calculated to be about 5. 7 kV, much lower than 11. 2 kV, the static breakdown voltage of 3 mm air gap; Extraordinary extinction was also observed in air just like in nitrogen. Both the two phenomena indicated the existence of the shallow traps and consequently the second-electron emissidn in the alumina surface, which were important for ignition and maintaining stage of Townsend DBD. It is found that the thickness of alumina is important for air DBD, and the thickness less than 1.5 mm can not avoid the filamentary discharge. If two 1 mm thick quartz plates are used instead of alumina, it is impossible to get homogenous DBD at 670 PaN 0. 1 MPa in air. The mechanism of Townsend DBD in 3 mm air gap is attributed to the combined effects of the unique shallow traps in the alumina surface and the current-limitation of the dielectrics.