高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2012年
7期
1568-1575
,共8页
介质阻挡放电(DBD)%斑图放电%辉光放电%放电模式%转换过程%增强型电荷耦合器件(ICCD)
介質阻擋放電(DBD)%斑圖放電%輝光放電%放電模式%轉換過程%增彊型電荷耦閤器件(ICCD)
개질조당방전(DBD)%반도방전%휘광방전%방전모식%전환과정%증강형전하우합기건(ICCD)
dielectric barrier discharge(DBD)%spatio-temporal patterned discharge%glow discharge%dischargemode%conversion process%intensified charge couple deviceCICCD)
为研究在大气压氦气中斑图放电与辉光放电的转换,利用高频高压电源进行了大气压氦气介质阻挡放电(DBD)试验。通过测量外加电压与回路电流随时间变化的波形,并利用增强型电荷耦合器件(intensifiedchargecoupleddevice,ICCD)相机同时拍摄电极侧面和底面的短时曝光放电图像,研究了斑图放电和辉光放电的放电模式以及2种放电模式的转换规律。研究结果显示:放电起始时放电空间出现斑图放电,每个斑图放电单元经历了由汤森放电向辉光放电的演化过程;放电起始后降低外加电压,可得到稳定的单脉冲辉光放电;升高外加电压,回路电流逐渐变成双脉冲,斑图放电单元面积变小,放电单元数增多,放电逐渐均匀;外加电压升高到回路电流变为3脉冲及以上时放电转化为多脉冲辉光放电。以上结果证明:单个回路电流波形不能用来判断放电的均匀性;随着外加电压的升高,斑图放电向辉光放电的转换过程实质上是局部辉光放电向整体辉光放电的演化过程。
為研究在大氣壓氦氣中斑圖放電與輝光放電的轉換,利用高頻高壓電源進行瞭大氣壓氦氣介質阻擋放電(DBD)試驗。通過測量外加電壓與迴路電流隨時間變化的波形,併利用增彊型電荷耦閤器件(intensifiedchargecoupleddevice,ICCD)相機同時拍攝電極側麵和底麵的短時曝光放電圖像,研究瞭斑圖放電和輝光放電的放電模式以及2種放電模式的轉換規律。研究結果顯示:放電起始時放電空間齣現斑圖放電,每箇斑圖放電單元經歷瞭由湯森放電嚮輝光放電的縯化過程;放電起始後降低外加電壓,可得到穩定的單脈遲輝光放電;升高外加電壓,迴路電流逐漸變成雙脈遲,斑圖放電單元麵積變小,放電單元數增多,放電逐漸均勻;外加電壓升高到迴路電流變為3脈遲及以上時放電轉化為多脈遲輝光放電。以上結果證明:單箇迴路電流波形不能用來判斷放電的均勻性;隨著外加電壓的升高,斑圖放電嚮輝光放電的轉換過程實質上是跼部輝光放電嚮整體輝光放電的縯化過程。
위연구재대기압양기중반도방전여휘광방전적전환,이용고빈고압전원진행료대기압양기개질조당방전(DBD)시험。통과측량외가전압여회로전류수시간변화적파형,병이용증강형전하우합기건(intensifiedchargecoupleddevice,ICCD)상궤동시박섭전겁측면화저면적단시폭광방전도상,연구료반도방전화휘광방전적방전모식이급2충방전모식적전환규률。연구결과현시:방전기시시방전공간출현반도방전,매개반도방전단원경력료유탕삼방전향휘광방전적연화과정;방전기시후강저외가전압,가득도은정적단맥충휘광방전;승고외가전압,회로전류축점변성쌍맥충,반도방전단원면적변소,방전단원수증다,방전축점균균;외가전압승고도회로전류변위3맥충급이상시방전전화위다맥충휘광방전。이상결과증명:단개회로전류파형불능용래판단방전적균균성;수착외가전압적승고,반도방전향휘광방전적전환과정실질상시국부휘광방전향정체휘광방전적연화과정。
In order to study the conversion of spational-temporal patterned discharges to glow discharges in atmospheric helium, dielectric barrier discharges {DBDs) were obtained using a high-frequency power supply in atmospheric helium. Waveform of the applied voltage and loop current were measured and short exposure time discharge photos were taken with an intensified charge-couple device {ICCD} to investigate the characteristics of spatio-temporal patterned discharges, especially their conversion to glow discharges. The characteristics of glow discharges were also discussed. The results showed that spatio-temporal patterned discharges occurred when the applied voltage was high enough. Each pattern shared similar characteristics with a glow discharge and its physical process started from a Townsend discharge to a glow one. After a patterned discharge generated, a single-pulse glow discharge could be achieved when the applied voltage was adjusted to a lower voltage, a two-pulse discharge appeared at a higher voltage. At the same time, the radial size of each pattern became smaller, however, the number of the discharge channels increased. It is found that, with an increasing applied voltage, the discharge becomes uniform gradually and turns into multi-pulse glow discharges. The discharge current can not be used to diagnose the discharge mode. The conversion of a spatio-temporal patterned discharge to a glow barrier discharge with the increasing applied voltage is a progress that the discharge changed from a partial APGD {atmospheric pressure glow discharze) to a whole APGD.