电子设计工程
電子設計工程
전자설계공정
ELECTRONIC DESIGN ENGINEERING
2012年
17期
153-157
,共5页
张绍良%闫钧华%刘成%朱智超
張紹良%閆鈞華%劉成%硃智超
장소량%염균화%류성%주지초
红外图像增强%中值滤波%Sobel边缘检测%Laplace金字塔%CUDA%可编程GPU
紅外圖像增彊%中值濾波%Sobel邊緣檢測%Laplace金字塔%CUDA%可編程GPU
홍외도상증강%중치려파%Sobel변연검측%Laplace금자탑%CUDA%가편정GPU
infrared image enhancement%median filtering%Sobel edge detection%Laplace pyramid%CUDA%program- mable GPU
针对红外图像边缘模糊,对比度低的问题,文中研究了改进的中值滤波和改进的Sobel边缘检测对红外图像进行处理。在对处理后图像的特征进行分析的基础上,研究了改进的Laplace金字塔分解的图像融合算法,并基于CUDA并行处理技术,在可编程GPU上实现了红外图像快速增强的目的。该算法结合GPU的内存特点,应用纹理映射、多点访问、并行触发技术,优化数据的存储结构,提高数据处理速度,适用于对红外图像增强的实时性要求较高的领域。实验结果表明,该算法有较好的并行特性,能充分利用CUDA的并行计算能力,提高了红外图像增强的实时性。处理分辨率为3096x3096的红外图像时加速比达32.189。
針對紅外圖像邊緣模糊,對比度低的問題,文中研究瞭改進的中值濾波和改進的Sobel邊緣檢測對紅外圖像進行處理。在對處理後圖像的特徵進行分析的基礎上,研究瞭改進的Laplace金字塔分解的圖像融閤算法,併基于CUDA併行處理技術,在可編程GPU上實現瞭紅外圖像快速增彊的目的。該算法結閤GPU的內存特點,應用紋理映射、多點訪問、併行觸髮技術,優化數據的存儲結構,提高數據處理速度,適用于對紅外圖像增彊的實時性要求較高的領域。實驗結果錶明,該算法有較好的併行特性,能充分利用CUDA的併行計算能力,提高瞭紅外圖像增彊的實時性。處理分辨率為3096x3096的紅外圖像時加速比達32.189。
침대홍외도상변연모호,대비도저적문제,문중연구료개진적중치려파화개진적Sobel변연검측대홍외도상진행처리。재대처리후도상적특정진행분석적기출상,연구료개진적Laplace금자탑분해적도상융합산법,병기우CUDA병행처리기술,재가편정GPU상실현료홍외도상쾌속증강적목적。해산법결합GPU적내존특점,응용문리영사、다점방문、병행촉발기술,우화수거적존저결구,제고수거처리속도,괄용우대홍외도상증강적실시성요구교고적영역。실험결과표명,해산법유교호적병행특성,능충분이용CUDA적병행계산능력,제고료홍외도상증강적실시성。처리분변솔위3096x3096적홍외도상시가속비체32.189。
To deal with the problem of edge blur and low contrast, of the infrared image in infrared image processing, improved median filtering and improved Sobel edge detection are discussed. After the image being processed by algorithms of improved median filtering and improved Sobel edge detection, the features of the image are analyzed so that the improved image fusion algorithm of Laplace pyramid is presented. Programmable GPU is used to realize the purpose of fast infrared image enhancement based on CUDA parallel processing technology. The improved image fusion algorithm of Laplace pyramid is suitable for high real-time require areas of infrared image enhancement because that texture mapping, multi-access and parallel triggering technology are combined with characteristics of the GPU memory to optimize the data storage structure and speed up the data processing. Experimental results show that the algorithm has good parallel properties and can improve the real-time of infrared image enhancement through effectively implementing CUDA parallel computing power. The speedup is up to 32.189 in the 3096 x 3096 infrared image processing.