山东师范大学学报(自然科学版)
山東師範大學學報(自然科學版)
산동사범대학학보(자연과학판)
JOURNAL OF SHANGOND NORMAL UNIVERSITY(NATURAL SCIENCE)
2014年
1期
5-7
,共3页
无爪图%不相邻子图%子图的度%Dominating 圈
無爪圖%不相鄰子圖%子圖的度%Dominating 圈
무조도%불상린자도%자도적도%Dominating 권
claw -free graph%nonadjacent subgraphs%subgraph degree%Dominating cycle
笔者利用子图的度给出了如下结果:对2-连通无爪图 G,若任意同构于 K2的不相邻子图 H1,H2,H3满足:d(H1)+d(H2)+d(H3)≥|G|-1,则 G 的任意最长圈是 Dominating 圈。
筆者利用子圖的度給齣瞭如下結果:對2-連通無爪圖 G,若任意同構于 K2的不相鄰子圖 H1,H2,H3滿足:d(H1)+d(H2)+d(H3)≥|G|-1,則 G 的任意最長圈是 Dominating 圈。
필자이용자도적도급출료여하결과:대2-련통무조도 G,약임의동구우 K2적불상린자도 H1,H2,H3만족:d(H1)+d(H2)+d(H3)≥|G|-1,칙 G 적임의최장권시 Dominating 권。
In this paper,we study the relations between subgraph degrees and dominating cycles.The following results is proved.For a 2 -connected claw -free graph G.If d(H1 )+d(H2 )+d(H3 )≥|G|-1 ,for any nonadjacent subgraphs H1 ,H2 ,H3 isomorphic to K2 ,then every longest cycle of G is Dominating.