中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2013年
29期
33-38
,共6页
唐念%陈雄波%莫建松%王海强%吴忠标
唐唸%陳雄波%莫建鬆%王海彊%吳忠標
당념%진웅파%막건송%왕해강%오충표
催化剂%选择性催化还原%钛纳米管%铈%焙烧温度
催化劑%選擇性催化還原%鈦納米管%鈰%焙燒溫度
최화제%선택성최화환원%태납미관%시%배소온도
catalyst%selective catalytic reduction (SCR)%titanate nanotube%ceria%calcination temperature
铈改性钛纳米管是一种兼具良好脱硝活性、N2选择性和碱/碱土金属抗性的新型选择性催化还原脱硝催化剂,该文系统考察了焙烧温度对该催化剂脱硝活性和晶型结构、微观形貌及表面元素形态等理化特性的影响。实验结果表明,350℃和450℃焙烧所得样品的催化脱硝活性很高,在280~400℃之间均可维持80%以上的脱硝效率,而550℃焙烧所得样品的活性极低。通过 X 射线衍射、扫描电镜、透射电子显微镜、X 射线光电子能谱和比表面积(Brunauer-Emmett-Teller method,BET)法等表征发现,550℃焙烧所得样品的低活性与其管状结构被破坏和 Ce3+急剧减少等有关。因此,铈改性钛纳米管脱硝催化剂的焙烧温度不宜过高,且考虑到实际应用时温度常超过350℃,该催化剂的较佳焙烧温度为450℃。
鈰改性鈦納米管是一種兼具良好脫硝活性、N2選擇性和堿/堿土金屬抗性的新型選擇性催化還原脫硝催化劑,該文繫統攷察瞭焙燒溫度對該催化劑脫硝活性和晶型結構、微觀形貌及錶麵元素形態等理化特性的影響。實驗結果錶明,350℃和450℃焙燒所得樣品的催化脫硝活性很高,在280~400℃之間均可維持80%以上的脫硝效率,而550℃焙燒所得樣品的活性極低。通過 X 射線衍射、掃描電鏡、透射電子顯微鏡、X 射線光電子能譜和比錶麵積(Brunauer-Emmett-Teller method,BET)法等錶徵髮現,550℃焙燒所得樣品的低活性與其管狀結構被破壞和 Ce3+急劇減少等有關。因此,鈰改性鈦納米管脫硝催化劑的焙燒溫度不宜過高,且攷慮到實際應用時溫度常超過350℃,該催化劑的較佳焙燒溫度為450℃。
시개성태납미관시일충겸구량호탈초활성、N2선택성화감/감토금속항성적신형선택성최화환원탈초최화제,해문계통고찰료배소온도대해최화제탈초활성화정형결구、미관형모급표면원소형태등이화특성적영향。실험결과표명,350℃화450℃배소소득양품적최화탈초활성흔고,재280~400℃지간균가유지80%이상적탈초효솔,이550℃배소소득양품적활성겁저。통과 X 사선연사、소묘전경、투사전자현미경、X 사선광전자능보화비표면적(Brunauer-Emmett-Teller method,BET)법등표정발현,550℃배소소득양품적저활성여기관상결구피파배화 Ce3+급극감소등유관。인차,시개성태납미관탈초최화제적배소온도불의과고,차고필도실제응용시온도상초과350℃,해최화제적교가배소온도위450℃。
Ceria doped titanate nanotube was proved to be a promising DeNOx catalyst with good activity, perfect selectivity, and superior resistance to alkali/alkaline earth metal poisoning. This paper investigated the influence of calcination temperature on the selective catalytic reduction (SCR) performance and physicochemical properties of the catalyst including crystal structure, micro-morphology and state of surface species . According to experimental results, both the catalysts calcined at 350℃ and 450℃ show high activities for the catalytic selective reduction of NO, and NO conversion of above 80%could be obtained under the reaction temperature of 280~400℃, whereas the catalyst calcined at 550℃ is deactivated nearly. Characterized by scanning electron microscope, X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller (BET) method, it is suggested that deactivation of the catalyst calcined at 550℃ is mainly ascribed to the destruction of the nanotube structures and the significant decrease of Ce3+. Therefore, in addition to the fact that the realistic reaction temperature of SCR always exceeds 350℃, a calcination temperature of 450℃ is comparatively more suitable for catalyst preparation.