中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2013年
31期
58-64
,共7页
许昌%杨建川%李辰奇%SHEN Wenzhong%丁根宏%郑源%刘德有
許昌%楊建川%李辰奇%SHEN Wenzhong%丁根宏%鄭源%劉德有
허창%양건천%리신기%SHEN Wenzhong%정근굉%정원%류덕유
风电场微观选址优化%复杂地形%尾流模型%概率密度%遗传算法
風電場微觀選阯優化%複雜地形%尾流模型%概率密度%遺傳算法
풍전장미관선지우화%복잡지형%미류모형%개솔밀도%유전산법
wind farm layout optimization%complex terrain%wake model%probability density%genetic algorithm
针对复杂地形条件下,风电场微观选址优化技术难度大的问题,提出一种在复杂地形下进行风电场微观选址优化的方法。应用Jensen模型和Lissaman模型,综合考虑不同高度下风速分布和风力机之间的尾流影响,其中尾流考虑了上游风力机的尾流对下游风力机转轮面的遮挡面积的影响;风向按照十六分度处理,风速按照威布尔分布处理;用每分度风速、概率密度及尾流模型分别计算每个分度的功率值;优化目标是使整个风电场的输出功率达到最大。以风力机在给定风电场中坐标为自由变量,以地形边界和风力机之间的最小距离为约束条件,通过改进的实值编码遗传算法搜索最优解。最后将该优化算法得到的最优解与经验布置方法得到的结果进行比较,证明该优化算法的优越性,指出经验布置方法的局限性。
針對複雜地形條件下,風電場微觀選阯優化技術難度大的問題,提齣一種在複雜地形下進行風電場微觀選阯優化的方法。應用Jensen模型和Lissaman模型,綜閤攷慮不同高度下風速分佈和風力機之間的尾流影響,其中尾流攷慮瞭上遊風力機的尾流對下遊風力機轉輪麵的遮擋麵積的影響;風嚮按照十六分度處理,風速按照威佈爾分佈處理;用每分度風速、概率密度及尾流模型分彆計算每箇分度的功率值;優化目標是使整箇風電場的輸齣功率達到最大。以風力機在給定風電場中坐標為自由變量,以地形邊界和風力機之間的最小距離為約束條件,通過改進的實值編碼遺傳算法搜索最優解。最後將該優化算法得到的最優解與經驗佈置方法得到的結果進行比較,證明該優化算法的優越性,指齣經驗佈置方法的跼限性。
침대복잡지형조건하,풍전장미관선지우화기술난도대적문제,제출일충재복잡지형하진행풍전장미관선지우화적방법。응용Jensen모형화Lissaman모형,종합고필불동고도하풍속분포화풍력궤지간적미류영향,기중미류고필료상유풍력궤적미류대하유풍력궤전륜면적차당면적적영향;풍향안조십륙분도처리,풍속안조위포이분포처리;용매분도풍속、개솔밀도급미류모형분별계산매개분도적공솔치;우화목표시사정개풍전장적수출공솔체도최대。이풍력궤재급정풍전장중좌표위자유변량,이지형변계화풍력궤지간적최소거리위약속조건,통과개진적실치편마유전산법수색최우해。최후장해우화산법득도적최우해여경험포치방법득도적결과진행비교,증명해우화산법적우월성,지출경험포치방법적국한성。
Microscopic site selection for wind farms in complex terrain is a technological difficulty in the development of onshore wind farms. This paper presented a method for optimizing wind farm layout in complex terrain. This method employed Lissaman and Jensen wake models, took wind velocity distribution law and wake loss between different turbines into consideration and calculated the sheltering area effect of wake loss from upstream wind turbines on downstream wind turbines. Wind direction was divided into sixteen sections, and the wind speed was processed by the Weibull distribution. To calculate the output of each section, we used the wind speed distribution and its probability density as well as the wake loss between wind turbines for every section. The objective function is maximization of the whole wind farm's power output and the free variables are the wind turbines’ coordinates which are subject to boundary conditions and minimum distance conditions. The improved genetic algorithm (GA) for real number coding was used to search the optimal result. Then the optimized result was compared to the result from the experienced layout method. Results show the advantages of the present method, and the limitations of the experienced method.