长春理工大学学报(自然科学版)
長春理工大學學報(自然科學版)
장춘리공대학학보(자연과학판)
JOURNAL OF CHANGCHUN UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2013年
5期
84-87
,共4页
离散随机Lotka-Volterra竞争系统%重对数定律%参数的渐近性
離散隨機Lotka-Volterra競爭繫統%重對數定律%參數的漸近性
리산수궤Lotka-Volterra경쟁계통%중대수정률%삼수적점근성
discrete stochastic Lotka-Volterra competition system%law of the iterated logarithm%asymptotic characteris-tic of the parameters
Lotka-Volterra竞争系统是著名的人口动力系统模型之一。本文主要研究两种群Lotka-Volterra竞争系统。考虑到在实际中Lotka-Volterra竞争系统还受环境白噪声的影响,特别地,只需对白噪声的强度一个简单假设,就使得随机Lot-ka-Volterra模型的解随机最终有界。那么不同形式的环境白噪声是否会导致不同的结果,白噪声的出现是否会影响已有结论,并进行了研究。本文先对系统做变量替换,再通过重对数定律讨论了具有随机扰动的一个两种离散随机Lotka-Volter-ra竞争系统的参数的渐近性,主要结果以定理3给出。
Lotka-Volterra競爭繫統是著名的人口動力繫統模型之一。本文主要研究兩種群Lotka-Volterra競爭繫統。攷慮到在實際中Lotka-Volterra競爭繫統還受環境白譟聲的影響,特彆地,隻需對白譟聲的彊度一箇簡單假設,就使得隨機Lot-ka-Volterra模型的解隨機最終有界。那麽不同形式的環境白譟聲是否會導緻不同的結果,白譟聲的齣現是否會影響已有結論,併進行瞭研究。本文先對繫統做變量替換,再通過重對數定律討論瞭具有隨機擾動的一箇兩種離散隨機Lotka-Volter-ra競爭繫統的參數的漸近性,主要結果以定理3給齣。
Lotka-Volterra경쟁계통시저명적인구동력계통모형지일。본문주요연구량충군Lotka-Volterra경쟁계통。고필도재실제중Lotka-Volterra경쟁계통환수배경백조성적영향,특별지,지수대백조성적강도일개간단가설,취사득수궤Lot-ka-Volterra모형적해수궤최종유계。나요불동형식적배경백조성시부회도치불동적결과,백조성적출현시부회영향이유결론,병진행료연구。본문선대계통주변량체환,재통과중대수정률토론료구유수궤우동적일개량충리산수궤Lotka-Volter-ra경쟁계통적삼수적점근성,주요결과이정리3급출。
Lotka-Volterra competition system is one of the famous population dynamic system models. In this paper, the Lotka-Volterra competition system about two populations is researched. Considering that Lotka-Volterra competition system is often affected by environment white noises in practice,particularly,the solution of the stochastic Lotka-Volt-erra competition system is random ultimately bounded when a simple assumption to the intensity of white noises is made. So different white noises will cause different results, then whether the appearance of white noises will affect the previous result, that needs to be studied. In this paper, firstly variable substitutions to the system are used, and then the asymptotic characteristic of the parameters of a discrete stochastic Lotka-Volterra competition system is discussed by Law of the iterated logarithm,the result is given by theorem 3.