生态环境学报
生態環境學報
생태배경학보
ECOLOGY AND ENVIRONMENT
2013年
9期
1578-1582
,共5页
孟顺龙%瞿建宏%裘丽萍%胡庚东%范立民%宋超%吴伟%陈家长%徐跑
孟順龍%瞿建宏%裘麗萍%鬍庚東%範立民%宋超%吳偉%陳傢長%徐跑
맹순룡%구건굉%구려평%호경동%범립민%송초%오위%진가장%서포
富营养化水体%降磷%浮游植物%群落结构
富營養化水體%降燐%浮遊植物%群落結構
부영양화수체%강린%부유식물%군락결구
eutrophic water%phosphorus decrease%phytoplankton%community structure
浮游植物是水生态系统中物质循环和能量流动的基础,作为初级生产者,浮游植物的群落结构直接影响着水生态系统的结构和功能。在水产养殖生产中,如何根据养殖生物对生活环境的需求开展精准培水、定向培水,培养养殖生物所需要的浮游植物,在维持养殖水域生态平衡的同时又能为养殖生物提供一定的饵料资源,这一直是摆在水产科技工作者面前的重要难题和研究热点。已有的资料大都是通过添加磷的方式研究磷改变对浮游植物生长的影响,而有关富营养化水体降磷对浮游植物群落结构影响的研究尚未见报道。为此,试验通过向取自富营养化湖泊的水体中加入磷去除剂,采用Pielou均匀度指数、Mcnaughton优势度指数和Shannon多样性指数,研究自然水体中的磷被降低后水体浮游植物群落结构的变化情况。结果表明,所取富营养化水体中共检出绿藻(Chlorophyta)、硅藻(Bacillariophyta)、蓝藻(Cyanophyta)、裸藻(Euglenophyta)、隐藻(Cryptophyta)、甲藻(Pyrrophyta)6门29种(包括变种和变型);其中绿藻、蓝藻、硅藻、隐藻、裸藻、甲藻分别有7、4、2、1、1种,分别占总种数的24.13%、13.79%、6.90%、3.45%、3.45%。富营养化水体降磷后,虽然试验组和对照组在浮游植物种类组成上没有差异,但浮游植物群落结构特征发生了很大变化,浮游植物数量明显降低,由13238.8×104 cells· L-1降低至3997.5×104 cells· L-1,下降了69.8%;浮游植物优势种从1门(蓝藻(Cyanophyta))6种增加到3门(绿藻(Chlorophyta)、硅藻(Bacillariophyta)、蓝藻(Cyanophyta))12种,优势度指数从97.29%降低至86.30%,优势种门数和优势种种数远远高于对照组,优势度明显低于对照组;同时,浮游植物多样性指数和均匀度分别从1.85和0.38升高至2.60和0.54,显示出试验组浮游植物多样性和均匀度优于对照组。研究表明富营养化水体降磷对浮游植物群落结构产生了明显影响,使群落结构处于更加复杂、完整和稳定的状态。
浮遊植物是水生態繫統中物質循環和能量流動的基礎,作為初級生產者,浮遊植物的群落結構直接影響著水生態繫統的結構和功能。在水產養殖生產中,如何根據養殖生物對生活環境的需求開展精準培水、定嚮培水,培養養殖生物所需要的浮遊植物,在維持養殖水域生態平衡的同時又能為養殖生物提供一定的餌料資源,這一直是襬在水產科技工作者麵前的重要難題和研究熱點。已有的資料大都是通過添加燐的方式研究燐改變對浮遊植物生長的影響,而有關富營養化水體降燐對浮遊植物群落結構影響的研究尚未見報道。為此,試驗通過嚮取自富營養化湖泊的水體中加入燐去除劑,採用Pielou均勻度指數、Mcnaughton優勢度指數和Shannon多樣性指數,研究自然水體中的燐被降低後水體浮遊植物群落結構的變化情況。結果錶明,所取富營養化水體中共檢齣綠藻(Chlorophyta)、硅藻(Bacillariophyta)、藍藻(Cyanophyta)、裸藻(Euglenophyta)、隱藻(Cryptophyta)、甲藻(Pyrrophyta)6門29種(包括變種和變型);其中綠藻、藍藻、硅藻、隱藻、裸藻、甲藻分彆有7、4、2、1、1種,分彆佔總種數的24.13%、13.79%、6.90%、3.45%、3.45%。富營養化水體降燐後,雖然試驗組和對照組在浮遊植物種類組成上沒有差異,但浮遊植物群落結構特徵髮生瞭很大變化,浮遊植物數量明顯降低,由13238.8×104 cells· L-1降低至3997.5×104 cells· L-1,下降瞭69.8%;浮遊植物優勢種從1門(藍藻(Cyanophyta))6種增加到3門(綠藻(Chlorophyta)、硅藻(Bacillariophyta)、藍藻(Cyanophyta))12種,優勢度指數從97.29%降低至86.30%,優勢種門數和優勢種種數遠遠高于對照組,優勢度明顯低于對照組;同時,浮遊植物多樣性指數和均勻度分彆從1.85和0.38升高至2.60和0.54,顯示齣試驗組浮遊植物多樣性和均勻度優于對照組。研究錶明富營養化水體降燐對浮遊植物群落結構產生瞭明顯影響,使群落結構處于更加複雜、完整和穩定的狀態。
부유식물시수생태계통중물질순배화능량류동적기출,작위초급생산자,부유식물적군락결구직접영향착수생태계통적결구화공능。재수산양식생산중,여하근거양식생물대생활배경적수구개전정준배수、정향배수,배양양식생물소수요적부유식물,재유지양식수역생태평형적동시우능위양식생물제공일정적이료자원,저일직시파재수산과기공작자면전적중요난제화연구열점。이유적자료대도시통과첨가린적방식연구린개변대부유식물생장적영향,이유관부영양화수체강린대부유식물군락결구영향적연구상미견보도。위차,시험통과향취자부영양화호박적수체중가입린거제제,채용Pielou균균도지수、Mcnaughton우세도지수화Shannon다양성지수,연구자연수체중적린피강저후수체부유식물군락결구적변화정황。결과표명,소취부영양화수체중공검출록조(Chlorophyta)、규조(Bacillariophyta)、람조(Cyanophyta)、라조(Euglenophyta)、은조(Cryptophyta)、갑조(Pyrrophyta)6문29충(포괄변충화변형);기중록조、람조、규조、은조、라조、갑조분별유7、4、2、1、1충,분별점총충수적24.13%、13.79%、6.90%、3.45%、3.45%。부영양화수체강린후,수연시험조화대조조재부유식물충류조성상몰유차이,단부유식물군락결구특정발생료흔대변화,부유식물수량명현강저,유13238.8×104 cells· L-1강저지3997.5×104 cells· L-1,하강료69.8%;부유식물우세충종1문(람조(Cyanophyta))6충증가도3문(록조(Chlorophyta)、규조(Bacillariophyta)、람조(Cyanophyta))12충,우세도지수종97.29%강저지86.30%,우세충문수화우세충충수원원고우대조조,우세도명현저우대조조;동시,부유식물다양성지수화균균도분별종1.85화0.38승고지2.60화0.54,현시출시험조부유식물다양성화균균도우우대조조。연구표명부영양화수체강린대부유식물군락결구산생료명현영향,사군락결구처우경가복잡、완정화은정적상태。
Phytoplankton is the base of material recycle and energy flow in aquatic ecosystem. As the primary producer, the community structure of phytoplankton influences the structure and function of aquatic ecosystem directly. In aquaculture research field, how to cultivate fish needing phytoplankton, which can maintain the ecosystem balance of aquaculture water area and provide food for farming fish, has been always an important problem and research hotspot. The effect of phosphorus change on the growth of phytoplankton had been researched by the method of adding phosphorus to test water. However, the effect of decreasing phosphorus in eutrophic water on the community structure of phytoplankton has not been reported yet. The effect of decreasing phosphorus in eutrophic water on the community structure of phytoplankton was researched by adding phosphorus removing agent to test water sampling from eutrophication lake and by the method of Pielou uniformity index, Mcnaughton predominance index and Shannon diversity index. Results showed that there were 6 classes including 29 species of phytoplankton had been recorded in the test water sampling from Lake Wuli. Among them, Chlorophyta was the predominant species, which had 14 species, accounted for 48.28%of the total species. Cyanophyta, Bacillariophyta, Cryptophyta, Euglenophyta, Pyrrophyta were recorded 7, 4, 2, 1, 1 species and accounted for 24.13%, 13.79%, 6.90%, 3.45%, 3.45%respectively. There no difference in the number of phytoplankton species, but the community structure of phytoplankton changed significantly after the phosphorus in eutrophic water was decreased. And the quantity of phytoplankton decreased significantly from 13 238.8×104 cells· L-1 to 3 997.5×104 cells· L-1, and the decrease ratio was 69.8%. The predominant species increased from 1class (Cyanophyta) including 6 species to 3 classes (Chlorophyta, Bacillariophyta, Cyanophyta) including 12 species and the predominance index decreased from 97.29%to 86.30%, which meant the class and species of phytoplankton in test group were all larger than that in the control group and the predominance index of phytoplankton in test group was lower than that in the control group. The diversity index and uniformity index of phytoplankton changed from 1.85 to 2.60 and from 0.38 to 0.54 respectively, which meant the diversity index and uniformity index of phytoplankton of test group were all better than that of the control group. It would be concluded that the community structure of phytoplankton was more complex, integrated and stable after the phosphorus in eutrophic water was decreased.