中国有色金属学报(英文版)
中國有色金屬學報(英文版)
중국유색금속학보(영문판)
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
2013年
10期
3095-3103
,共9页
刘韵琴%刘云国%胡新将%郭一明
劉韻琴%劉雲國%鬍新將%郭一明
류운금%류운국%호신장%곽일명
改性壳聚糖%印迹%重金属污染物%Cr(VI)%吸附%去除率%动力学模型
改性殼聚糖%印跡%重金屬汙染物%Cr(VI)%吸附%去除率%動力學模型
개성각취당%인적%중금속오염물%Cr(VI)%흡부%거제솔%동역학모형
modified chitosan%imprinting%heavy metal pollutants%Cr(VI)%adsorption%removal rate%kinetic model
利用分子印迹技术和甲基丙烯酸对壳聚糖进行改性,并在改变吸附条件、吸附动力学和吸附等温线的基础上,对湘江样水中Cr(VI)进行吸附研究。结果表明:X射线衍射谱显示印迹聚合物的结晶能力减弱,但非结晶区面积增加,吸附点位数提高,对Cr(VI)的吸附容量增大;印迹聚合物对Cr(VI)的吸附能力随时间的延长而增加,8 h后达到饱和,最佳吸附时间是吸附后4~8 h,对Cr(VI)的提取率最大值为33.7%。提取液最佳pH 值是4.5~7.5;提取率随着壳聚糖脱乙酰度的增大而增大,吸附效果最好的是90%脱乙酰度壳聚糖。吸附量随着壳聚糖的浓度增加而增加,饱和后对 Cr(VI)的提取率变化相对平稳,实验测得最高去除率为98.3%。Cr(VI)印迹壳聚糖吸附的准一级动力学和二级动力学模型线性相关系数分别是0.9013和0.9875,吸附速率分别为0.0091 min?1和7.129 g/(mg·min)。Cr(VI)印迹壳聚糖的吸附更符合二级动力学模型,与Langmuir 吸附等温线的拟合性比 Freundlich吸附等温线的更好,计算得到的最大吸附容量为15.784 mg/g,对河水中Cr(VI)的吸附效果明显。
利用分子印跡技術和甲基丙烯痠對殼聚糖進行改性,併在改變吸附條件、吸附動力學和吸附等溫線的基礎上,對湘江樣水中Cr(VI)進行吸附研究。結果錶明:X射線衍射譜顯示印跡聚閤物的結晶能力減弱,但非結晶區麵積增加,吸附點位數提高,對Cr(VI)的吸附容量增大;印跡聚閤物對Cr(VI)的吸附能力隨時間的延長而增加,8 h後達到飽和,最佳吸附時間是吸附後4~8 h,對Cr(VI)的提取率最大值為33.7%。提取液最佳pH 值是4.5~7.5;提取率隨著殼聚糖脫乙酰度的增大而增大,吸附效果最好的是90%脫乙酰度殼聚糖。吸附量隨著殼聚糖的濃度增加而增加,飽和後對 Cr(VI)的提取率變化相對平穩,實驗測得最高去除率為98.3%。Cr(VI)印跡殼聚糖吸附的準一級動力學和二級動力學模型線性相關繫數分彆是0.9013和0.9875,吸附速率分彆為0.0091 min?1和7.129 g/(mg·min)。Cr(VI)印跡殼聚糖的吸附更符閤二級動力學模型,與Langmuir 吸附等溫線的擬閤性比 Freundlich吸附等溫線的更好,計算得到的最大吸附容量為15.784 mg/g,對河水中Cr(VI)的吸附效果明顯。
이용분자인적기술화갑기병희산대각취당진행개성,병재개변흡부조건、흡부동역학화흡부등온선적기출상,대상강양수중Cr(VI)진행흡부연구。결과표명:X사선연사보현시인적취합물적결정능력감약,단비결정구면적증가,흡부점위수제고,대Cr(VI)적흡부용량증대;인적취합물대Cr(VI)적흡부능력수시간적연장이증가,8 h후체도포화,최가흡부시간시흡부후4~8 h,대Cr(VI)적제취솔최대치위33.7%。제취액최가pH 치시4.5~7.5;제취솔수착각취당탈을선도적증대이증대,흡부효과최호적시90%탈을선도각취당。흡부량수착각취당적농도증가이증가,포화후대 Cr(VI)적제취솔변화상대평은,실험측득최고거제솔위98.3%。Cr(VI)인적각취당흡부적준일급동역학화이급동역학모형선성상관계수분별시0.9013화0.9875,흡부속솔분별위0.0091 min?1화7.129 g/(mg·min)。Cr(VI)인적각취당적흡부경부합이급동역학모형,여Langmuir 흡부등온선적의합성비 Freundlich흡부등온선적경호,계산득도적최대흡부용량위15.784 mg/g,대하수중Cr(VI)적흡부효과명현。
Methacrylic acid was used together with a molecular imprinting technique to modify chitosan. In addition, the adsorption kinetics and adsorption isotherms were recorded and the results were analyzed to investigate reparative adsorption for Cr(VI) from the polluted Xiangjiang River water. A comparative X-ray analysis shows that the degree of crystallization in the imprinted polymer was significantly weakened, the area of the non-crystalline region was larger. There were more adsorption sites in the imprinted polymer, and the adsorption capacity towards Cr(VI) was increased. The adsorption capacity of the imprinted polymer towards Cr(VI) increased with time and reaches saturation after 8 h. The optimal adsorption time was 4?8 h after the adsorption starting and the optimal pH value for the solution was in the range of 4.5?7.5. When the chitosan reaches saturation, the adsorption capacity achieves a state of equilibrium, and the maximum Cr(VI) extraction rate reaches 33.7%. Moreover, the adsorption capacity of the imprinted polymer towards Cr(VI) increases with increasing chitosan concentration. In this situation, the Cr(VI) extraction rate shows little variation, and the maximum removal rate can reach 98.3%. Furthermore, the Cr(VI) extraction rate increases with an increase in the degree of deacetylation in the chatoyant and chitosan, with the best adsorption effect corresponding to 90%deacetylation. Fitting the adsorption data to the quasi first-and second-order kinetic models yields correlation coefficients of 0.9013 and 0.9875, respectively. The corresponding rate constants for the two models are 0.0091 min?1 and 7.129 g/(mg·min), respectively. Hence, the adsorption using Cr(VI)-imprinted chitosan is more consistent with the second-order kinetics. Comparing the data to Freundlich and Langmuir adsorption isotherms shows that the latter has a better linear fit and a maximum adsorption capacity of 15.784 mg/g.