数学研究
數學研究
수학연구
JOURNAL OF MATHEMATICAL STUDY
2012年
2期
167-174
,共8页
拟polar环%强clean环%强π-正则环%谱幂等元
擬polar環%彊clean環%彊π-正則環%譜冪等元
의polar배%강clean배%강π-정칙배%보멱등원
Quasipolar ring%Strongly clean ring%Strongly π-regular ring%Spectral idempotent
称一个环R中的元素a是拟polar元,若存在p2=P∈R满足p∈comm_R~2(a),a+P∈U(R)并且ap∈R~(qnil);且称环R是拟polar的如果R中每一个元素都是拟polar元.本文证明了,任一环R中强π-正则元是拟polar的,而拟polar元是强clean的.拟polar环的一些扩张性质也作了探讨.
稱一箇環R中的元素a是擬polar元,若存在p2=P∈R滿足p∈comm_R~2(a),a+P∈U(R)併且ap∈R~(qnil);且稱環R是擬polar的如果R中每一箇元素都是擬polar元.本文證明瞭,任一環R中彊π-正則元是擬polar的,而擬polar元是彊clean的.擬polar環的一些擴張性質也作瞭探討.
칭일개배R중적원소a시의polar원,약존재p2=P∈R만족p∈comm_R~2(a),a+P∈U(R)병차ap∈R~(qnil);차칭배R시의polar적여과R중매일개원소도시의polar원.본문증명료,임일배R중강π-정칙원시의polar적,이의polar원시강clean적.의polar배적일사확장성질야작료탐토.
An element a in a ring R is called quasipolar if there exists p2 = p ∈ R such that p ∈comm2R(α), a+p E U(R) and ap E Rqnil; and a ring R is said to be quasipolax in case every element of R is quasipolar. In this note, we prove that any strongly π-regulax element in a ring R is quasipotar, and any quasipolar element in R is strongly clean. Several extension properties of quasipolar rings are also investigated.