交通运输工程与信息学报
交通運輸工程與信息學報
교통운수공정여신식학보
JOURNAL OF TRANSPORTATION ENGINEERING AND INFORMATION
2012年
2期
84-88,131
,共6页
邓浒楠%朱信山%张琼%赵锦焕
鄧滸楠%硃信山%張瓊%趙錦煥
산호남%주신산%장경%조금환
城市交通%公交客流%多核最小二乘支持向量机%遗传算法%参数优化
城市交通%公交客流%多覈最小二乘支持嚮量機%遺傳算法%參數優化
성시교통%공교객류%다핵최소이승지지향량궤%유전산법%삼수우화
Urban traffic%pubic transportation flow%MLS-SVM%the genetic algorithm%parameteroptimization
公交客流是公交规划和运营调度的基础。针对短期公交客流的非线性、随机性和复杂性及支持向量机单核核函数自适应能力较弱的特点,提出一种基于多核最小二乘支持向量机的公交客流预测方法。该方法既考虑到了公交客流的历史数据规律,又顾及到短期公交客流的时变特性,充分利用了相关参数的知识信息。为了保证模型的自适应能力和提高模型的泛化能力,作者提出了综合评价指标,并采用改进遗传算法实现向量机参数优化。最后,结合LS.SVM工具箱,在MATLAB平台上实现长春市短期公交客流的预测。预测结果表明,提出的多核预测方法具有较高的准确性、较强的鲁棒性和自适应能力,在公交客流预测中有具有较好的应用价值。
公交客流是公交規劃和運營調度的基礎。針對短期公交客流的非線性、隨機性和複雜性及支持嚮量機單覈覈函數自適應能力較弱的特點,提齣一種基于多覈最小二乘支持嚮量機的公交客流預測方法。該方法既攷慮到瞭公交客流的歷史數據規律,又顧及到短期公交客流的時變特性,充分利用瞭相關參數的知識信息。為瞭保證模型的自適應能力和提高模型的汎化能力,作者提齣瞭綜閤評價指標,併採用改進遺傳算法實現嚮量機參數優化。最後,結閤LS.SVM工具箱,在MATLAB平檯上實現長春市短期公交客流的預測。預測結果錶明,提齣的多覈預測方法具有較高的準確性、較彊的魯棒性和自適應能力,在公交客流預測中有具有較好的應用價值。
공교객류시공교규화화운영조도적기출。침대단기공교객류적비선성、수궤성화복잡성급지지향량궤단핵핵함수자괄응능력교약적특점,제출일충기우다핵최소이승지지향량궤적공교객류예측방법。해방법기고필도료공교객류적역사수거규률,우고급도단기공교객류적시변특성,충분이용료상관삼수적지식신식。위료보증모형적자괄응능력화제고모형적범화능력,작자제출료종합평개지표,병채용개진유전산법실현향량궤삼수우화。최후,결합LS.SVM공구상,재MATLAB평태상실현장춘시단기공교객류적예측。예측결과표명,제출적다핵예측방법구유교고적준학성、교강적로봉성화자괄응능력,재공교객류예측중유구유교호적응용개치。
Public transportation flow is the basic data for the public transport planning and operation scheduling. Based on the multiple-kernel least square support vector machine (MLS-SVM), the paper presented a new pubic transportation flow prediction model according to the non-linear, stochastic and complex characteristics of short-term public traffic flow. The proposed model not only considered the history data, but also took the character of the short-term public flow into account. In order to improve the suitability of the tradition model, a new evaluation index was proposed to portray the training performance of MLS-SVM. Crossover and mutation was modified with the genetic algorithm (GA), then using the improved CA optimized the penalty parameter and nuclear parameter. The model was applied to Chang-chun city, the result showed that the proposed model had satisfactory perform ache and robustness, and had good potential for predicting the short-term public transportation flow.