太原科技大学学报
太原科技大學學報
태원과기대학학보
JOURNAL OF TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
2012年
3期
167-171
,共5页
液压系统故障诊断%神经网络%D-S证据理论
液壓繫統故障診斷%神經網絡%D-S證據理論
액압계통고장진단%신경망락%D-S증거이론
hydraulic system fault diagnosis%neural network%D-S evidence theory
针对液压系统故障多样性和复杂性等特点,基于信息融合原理,提出了一种基于神经网络和D-S(Dempster-Shafer)证据理论相结合的液压系统故障诊断方法。该方法通过构建多子神经网络分类模块进行局部诊断,利用各子神经网络的输出值作为证据理论中的基本可信度,经过证据理论的再次融合得出最终的诊断结果。实例表明,该方法通过简化神经网络结构,提高了局部诊断网络的诊断能力,通过对多源多特征参数的融合,充分利用各传感器的冗余和互补的故障信息,与单一故障特征的诊断相比,显著提高了故障诊断的准确率,降低了决策的不确定性。
針對液壓繫統故障多樣性和複雜性等特點,基于信息融閤原理,提齣瞭一種基于神經網絡和D-S(Dempster-Shafer)證據理論相結閤的液壓繫統故障診斷方法。該方法通過構建多子神經網絡分類模塊進行跼部診斷,利用各子神經網絡的輸齣值作為證據理論中的基本可信度,經過證據理論的再次融閤得齣最終的診斷結果。實例錶明,該方法通過簡化神經網絡結構,提高瞭跼部診斷網絡的診斷能力,通過對多源多特徵參數的融閤,充分利用各傳感器的冗餘和互補的故障信息,與單一故障特徵的診斷相比,顯著提高瞭故障診斷的準確率,降低瞭決策的不確定性。
침대액압계통고장다양성화복잡성등특점,기우신식융합원리,제출료일충기우신경망락화D-S(Dempster-Shafer)증거이론상결합적액압계통고장진단방법。해방법통과구건다자신경망락분류모괴진행국부진단,이용각자신경망락적수출치작위증거이론중적기본가신도,경과증거이론적재차융합득출최종적진단결과。실례표명,해방법통과간화신경망락결구,제고료국부진단망락적진단능력,통과대다원다특정삼수적융합,충분이용각전감기적용여화호보적고장신식,여단일고장특정적진단상비,현저제고료고장진단적준학솔,강저료결책적불학정성。
According to the diversity and complexity features of hydraulic system fault,a hydraulic system failure diagnosis method combing neural networks and D-S evidence theory was presented by means of information fusion theory.This method conducts local diagnostic by building multi-neural network classification module,using the output of each neural networks as the evidence′s basis belief assignment,then through D-S evidence combination to get the final result.The example verifies that this method simplifies the neural network structure and improves the diagnostic capabilities of diagnostic networks,through combing the multi-source and multi-feature,the accuracy of fault diagnosis is improved significantly and the uncertainty of decision-making is reduced,when comparing with diagnostic based on single fault characteristic by making full use of various redundant and complementary information from multi-sensor.