晋中学院学报
晉中學院學報
진중학원학보
JOURNAL OF JINZHONG UNIVERSITY
2012年
3期
1-4,16
,共5页
二阶退化双曲型方程%第二类广义Darboux问题%解的存在唯一性
二階退化雙麯型方程%第二類廣義Darboux問題%解的存在唯一性
이계퇴화쌍곡형방정%제이류엄의Darboux문제%해적존재유일성
degenerate hyperbolic equations%generalized Darboux' s second problem%existence and uniqueness of solutions.
A.V.Bitsadze在文[1]中提出和研究了二阶一致线性双曲型方程uxx-uyy+aux+by+cu+d=0(A)的第一类和第二类Darboux问题.本文的目的是讨论二阶退化双曲型方程第二类广义Darboux问题和斜微商问题解的表示式,并证明这些问题解的存在唯一性。本文使用不同于[1]中的方法,但类似于[1]中的方程(A),根据本文中的结果,我们可以解决广义Chaplygin方程在一般区域上的Frankl问题.
A.V.Bitsadze在文[1]中提齣和研究瞭二階一緻線性雙麯型方程uxx-uyy+aux+by+cu+d=0(A)的第一類和第二類Darboux問題.本文的目的是討論二階退化雙麯型方程第二類廣義Darboux問題和斜微商問題解的錶示式,併證明這些問題解的存在唯一性。本文使用不同于[1]中的方法,但類似于[1]中的方程(A),根據本文中的結果,我們可以解決廣義Chaplygin方程在一般區域上的Frankl問題.
A.V.Bitsadze재문[1]중제출화연구료이계일치선성쌍곡형방정uxx-uyy+aux+by+cu+d=0(A)적제일류화제이류Darboux문제.본문적목적시토론이계퇴화쌍곡형방정제이류엄의Darboux문제화사미상문제해적표시식,병증명저사문제해적존재유일성。본문사용불동우[1]중적방법,단유사우[1]중적방정(A),근거본문중적결과,아문가이해결엄의Chaplygin방정재일반구역상적Frankl문제.
In [l], A.V.Bitsadze put forward and discussed Darboux's first and second problems for the unear hyperbolicequation uxx-Uyy+aux+by+cu+d=0 without parabolic degenerate line in a closed domain D. The present paper dealt with some boundary value problems for the degenerate hyperbolic equations of second order. The representations of solutions for Darboux's second problem and oblique derivative problem in general domains were given, and the existence and uniqueness of solutions for the problems were proved. The method in this paper is different from that in [ 1 ] and simpler than that for the equation (A) in [ 1 ], by the result in this paper, the Frankl problem can be solved of generalized Chaplygin equations in general domains.