高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2012年
5期
1070-1077
,共8页
介质阻挡放电(DBD)%大气压%辉光放电%惰性气体%彭宁电离%发射光谱
介質阻擋放電(DBD)%大氣壓%輝光放電%惰性氣體%彭寧電離%髮射光譜
개질조당방전(DBD)%대기압%휘광방전%타성기체%팽저전리%발사광보
dielectric barrier discharge (DBD)%atmospheric pressure%glow discharge%inert gases%Penning ionization%emission spectrum
为了加深对大气压惰性气体介质阻挡放电的认识,使用电特性测量、高速摄影,发射光谱等手段研究了平板结构大气压惰性气体介质阻挡放电的放电模式、演化过程以及放电机理,并对不同气体的放电特性进行了比较。实验结果表明在2~8mm大气压氦气、氖气中可很容易的实现稳定的均匀放电,并且其放电模式为辉光放电。对2mm气隙的高频大气压氩气介质阻挡放电研究的结果表明,氩气中不易实现覆盖整个电极的均匀放电,而随外加电压的增加,更容易出现自组织的斑图;当气隙距离〉3mm时氩气放电为细丝状的流注放电,并且其放电通道中的电流密度可达7.5A/cm2。ICCD高速相机拍摄的时间分辨放电图像显示,大气压氦气、氖气以及氩气的均匀放电为汤森放电向辉光放电的演化过程。光谱诊断结果表明,惰性气体的高能亚稳态粒子与杂质分子的彭宁电离对放电的均匀性起着非常关键的作用。氦气放电等离子体中观察到了氮离子的第一负带系N2+(B2Σu+→X2Σg+);而在氖气和氩气中没有发现这个带系,观察到的是氮分子的第二正带系(C3Πu→B3Πg)的发射谱线,这说明氖原子和氩原子的亚稳态能级太低不足以激发氮离子的第一负带系。
為瞭加深對大氣壓惰性氣體介質阻擋放電的認識,使用電特性測量、高速攝影,髮射光譜等手段研究瞭平闆結構大氣壓惰性氣體介質阻擋放電的放電模式、縯化過程以及放電機理,併對不同氣體的放電特性進行瞭比較。實驗結果錶明在2~8mm大氣壓氦氣、氖氣中可很容易的實現穩定的均勻放電,併且其放電模式為輝光放電。對2mm氣隙的高頻大氣壓氬氣介質阻擋放電研究的結果錶明,氬氣中不易實現覆蓋整箇電極的均勻放電,而隨外加電壓的增加,更容易齣現自組織的斑圖;噹氣隙距離〉3mm時氬氣放電為細絲狀的流註放電,併且其放電通道中的電流密度可達7.5A/cm2。ICCD高速相機拍攝的時間分辨放電圖像顯示,大氣壓氦氣、氖氣以及氬氣的均勻放電為湯森放電嚮輝光放電的縯化過程。光譜診斷結果錶明,惰性氣體的高能亞穩態粒子與雜質分子的彭寧電離對放電的均勻性起著非常關鍵的作用。氦氣放電等離子體中觀察到瞭氮離子的第一負帶繫N2+(B2Σu+→X2Σg+);而在氖氣和氬氣中沒有髮現這箇帶繫,觀察到的是氮分子的第二正帶繫(C3Πu→B3Πg)的髮射譜線,這說明氖原子和氬原子的亞穩態能級太低不足以激髮氮離子的第一負帶繫。
위료가심대대기압타성기체개질조당방전적인식,사용전특성측량、고속섭영,발사광보등수단연구료평판결구대기압타성기체개질조당방전적방전모식、연화과정이급방전궤리,병대불동기체적방전특성진행료비교。실험결과표명재2~8mm대기압양기、내기중가흔용역적실현은정적균균방전,병차기방전모식위휘광방전。대2mm기극적고빈대기압아기개질조당방전연구적결과표명,아기중불역실현복개정개전겁적균균방전,이수외가전압적증가,경용역출현자조직적반도;당기극거리〉3mm시아기방전위세사상적류주방전,병차기방전통도중적전류밀도가체7.5A/cm2。ICCD고속상궤박섭적시간분변방전도상현시,대기압양기、내기이급아기적균균방전위탕삼방전향휘광방전적연화과정。광보진단결과표명,타성기체적고능아은태입자여잡질분자적팽저전리대방전적균균성기착비상관건적작용。양기방전등리자체중관찰도료담리자적제일부대계N2+(B2Σu+→X2Σg+);이재내기화아기중몰유발현저개대계,관찰도적시담분자적제이정대계(C3Πu→B3Πg)적발사보선,저설명내원자화아원자적아은태능급태저불족이격발담리자적제일부대계。
To deeply understand dielectric barrier discharge in inert gases at atmospheric pressure, we investigated the breakdown voltage, the discharge mode, and evolution of DBD in a parallel gap by means of electrical measurements and fast photography in helium, neon, and argon at atmospheric pressure. Homogenous discharges could be easily produced in 2 - 8 mm gaps in helium and neon, and they were attributed to glow discharge. Compared to that in helium or neon, the homogenous DBD often covered only a part of the electrode in 2 mm-argon using the high frequency power. And with a small increase of the applied voltage, it would turn into a pattern mode. When the argon width was no less than 3mm, the DBD always resulted in bright filamentary streamers in which the current density could reach 7. 5 A/cm2. High-speed time-resolved photographs of the homogenous discharge in helium, neon and argon were taken using an ICCD camera. Side-view photographs showed an evolution from Townsend discharge to glow discharge. The end-view photographs exhibited a radial development. The spectroscopic diagnosis showed that the penning ionization between energetic metastabilty and impurities was the most important reason leading to a homogenous discharge. The N+ first negative system(B2∑u+ →X2∑g+ ), existing in helium discharge, could not be observed in the neon or argon, as was due to the lower energy level of metastable neon and argon states. Instead, the emission spectral lines of N2 second positive band system( C3 Пu→B3 Пg) were observed in neon and argon.