高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2012年
6期
1428-1435
,共8页
李永明%邹岸新%徐禄文%张淮清
李永明%鄒岸新%徐祿文%張淮清
리영명%추안신%서록문%장회청
有限元-积分法%特高压直流输电线路%合成电场%离子流密度%极间距%避雷线
有限元-積分法%特高壓直流輸電線路%閤成電場%離子流密度%極間距%避雷線
유한원-적분법%특고압직류수전선로%합성전장%리자류밀도%겁간거%피뢰선
finite element-integral method%UHVDC transmission lines%total electric field%ion current density%distance between poles%lightning wires
针对特高压直流输电线的地面电场和离子流密度的计算问题,采用有限元-积分方法,对双极离子流场的控制方程进行求解,同时还对空间电荷密度初值进行了改进。通过计算,发现该方法能较快地获得稳定的数值解。通过采用该方法对±400kV的直流线路进行了比对计算,验证了该算法的有效性。将该方法应用于实际的±800kV直流输电线路,对地面合成电场和离子流密度进行了计算,分析了导线对地高度、极间距、正负极起晕情况不同以及避雷线对地面合成电场和离子流密度的影响。结果显示随导线高度升高和极间距减小,地面的最大电场强度和离子流密度随之减小。在正、负极起晕不同时,负极导线下面的合成电场和离子流密度的最大值比正极大。计算中,考虑避雷线会增大地面的合成场强和离子流密度,但是不明显。
針對特高壓直流輸電線的地麵電場和離子流密度的計算問題,採用有限元-積分方法,對雙極離子流場的控製方程進行求解,同時還對空間電荷密度初值進行瞭改進。通過計算,髮現該方法能較快地穫得穩定的數值解。通過採用該方法對±400kV的直流線路進行瞭比對計算,驗證瞭該算法的有效性。將該方法應用于實際的±800kV直流輸電線路,對地麵閤成電場和離子流密度進行瞭計算,分析瞭導線對地高度、極間距、正負極起暈情況不同以及避雷線對地麵閤成電場和離子流密度的影響。結果顯示隨導線高度升高和極間距減小,地麵的最大電場彊度和離子流密度隨之減小。在正、負極起暈不同時,負極導線下麵的閤成電場和離子流密度的最大值比正極大。計算中,攷慮避雷線會增大地麵的閤成場彊和離子流密度,但是不明顯。
침대특고압직류수전선적지면전장화리자류밀도적계산문제,채용유한원-적분방법,대쌍겁리자류장적공제방정진행구해,동시환대공간전하밀도초치진행료개진。통과계산,발현해방법능교쾌지획득은정적수치해。통과채용해방법대±400kV적직류선로진행료비대계산,험증료해산법적유효성。장해방법응용우실제적±800kV직류수전선로,대지면합성전장화리자류밀도진행료계산,분석료도선대지고도、겁간거、정부겁기훈정황불동이급피뢰선대지면합성전장화리자류밀도적영향。결과현시수도선고도승고화겁간거감소,지면적최대전장강도화리자류밀도수지감소。재정、부겁기훈불동시,부겁도선하면적합성전장화리자류밀도적최대치비정겁대。계산중,고필피뢰선회증대지면적합성장강화리자류밀도,단시불명현。
To solve the problem of calculating the electric field and ion current density of HVDC transmission lines on the ground, we applied a finite element-integral method to solve bipolar ionized field control equations, and improved the initial value of space charge density. The calculations reveal that the method can quickly obtain a stable numerical solution. Moreover, we adopted the method to calculate 400 kV DC transmission lines and to verify the effectiveness of the algorithm. Then we simulated the electric fields and ion current densities on the ground of 800 kV DC transmission lines, and analyzed the influences of the wire-to-gr0und height, the distance between poles , the different corona-starting between poles and lightning wires on the electric field and ion current density on the ground , respectively. It is concluded that the maximum electric field strength on the ground and the ion current density decreases with the increasing of height of line and decreasing of the poles distance, and that the electric field and ion current densities under the negative lines are higher than those of the positive when the corona-starting of positive and negative poles is different. When the Lightning wires are considered in calculation, the total electric field and ion current density will unremarkably increase.