高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2012年
6期
1500-1505
,共6页
刘育明%姚陈果%孙才新%Yilu LIU
劉育明%姚陳果%孫纔新%Yilu LIU
류육명%요진과%손재신%Yilu LIU
北美电网监测系统(FNET)%频率扰动记录单元(FDRs)%异常值检测%稳健估计%B样条基函数%样条函数
北美電網鑑測繫統(FNET)%頻率擾動記錄單元(FDRs)%異常值檢測%穩健估計%B樣條基函數%樣條函數
북미전망감측계통(FNET)%빈솔우동기록단원(FDRs)%이상치검측%은건고계%B양조기함수%양조함수
north America frequency monitoring network (FNET)%frequency disturbance recorders (FDRs)%outlier detection%robust statistics%B spline basis function%spline
北美电网监测系统(FNET)是在配网侧实时采集电网频率的广域测量系统。由于硬件故障或网络中断,频率扰动记录单元(FDRs)采集的数据不可避免地包含尖峰或缺失数据段等异常数据,在剔除尖峰同时常用的一维中值滤波,弱化频率波动的细节信息无法弥补缺失数据段。针对此一问题,提出了融合稳健统计和B样条函数的频率异常数据处理方法,它通过设定阈值辨识尖峰值,采用B样条基函数的线性组合重构原始频率序列,引入曲线粗糙度控制B样条基函数学习过程中存在的过拟合问题。该方法仅在局部范围内处理频率异常数据,能最大限度地保留频率波动信息,且计算简洁,能实现任意阶B样条函数的构造及学习,易于推广到其他时间序列的数据预处理。
北美電網鑑測繫統(FNET)是在配網側實時採集電網頻率的廣域測量繫統。由于硬件故障或網絡中斷,頻率擾動記錄單元(FDRs)採集的數據不可避免地包含尖峰或缺失數據段等異常數據,在剔除尖峰同時常用的一維中值濾波,弱化頻率波動的細節信息無法瀰補缺失數據段。針對此一問題,提齣瞭融閤穩健統計和B樣條函數的頻率異常數據處理方法,它通過設定閾值辨識尖峰值,採用B樣條基函數的線性組閤重構原始頻率序列,引入麯線粗糙度控製B樣條基函數學習過程中存在的過擬閤問題。該方法僅在跼部範圍內處理頻率異常數據,能最大限度地保留頻率波動信息,且計算簡潔,能實現任意階B樣條函數的構造及學習,易于推廣到其他時間序列的數據預處理。
북미전망감측계통(FNET)시재배망측실시채집전망빈솔적엄역측량계통。유우경건고장혹망락중단,빈솔우동기록단원(FDRs)채집적수거불가피면지포함첨봉혹결실수거단등이상수거,재척제첨봉동시상용적일유중치려파,약화빈솔파동적세절신식무법미보결실수거단。침대차일문제,제출료융합은건통계화B양조함수적빈솔이상수거처리방법,타통과설정역치변식첨봉치,채용B양조기함수적선성조합중구원시빈솔서렬,인입곡선조조도공제B양조기함수학습과정중존재적과의합문제。해방법부재국부범위내처리빈솔이상수거,능최대한도지보류빈솔파동신식,차계산간길,능실현임의계B양조함수적구조급학습,역우추엄도기타시간서렬적수거예처리。
Raw data from the frequency disturbance recorders (FDRs) inevitably contain outliers such as spikes or missing segments due to hardware failure and/or network interruption, and one dimension median filtering is commonly used to eliminate these outliers. However, this filtering removes the spikes as well as the detailed information of frequency variation, and is incapable of replacing the missing data. Consequently, we combined robust statistics and B spline function to deal with outliers in the FDR raw data. The spikes were first identified by a preset threshold of robust statistics, then the spikes and the missing data were replaced using B-spline smoothing, finally, the FDR data were reconstructed by a linear combination of a family of B spline basks functions; and roughness of the constructed curves was controlled to avoid the over fitting problem of this technique. The proposed method can only be used for frequency outliers and keep the rest of the FDR data intact. Test examples validate that the method and its application may be easily extended to time series data in other fields using arbitrary order of Bspline functions.