电子学报
電子學報
전자학보
ACTA ELECTRONICA SINICA
2013年
12期
2479-2486
,共8页
李明爱%崔燕%杨金福%郝冬梅
李明愛%崔燕%楊金福%郝鼕梅
리명애%최연%양금복%학동매
脑机接口%运动想象%希尔伯特-黄变换%共空域子空间分解%特征融合%自适应
腦機接口%運動想象%希爾伯特-黃變換%共空域子空間分解%特徵融閤%自適應
뇌궤접구%운동상상%희이백특-황변환%공공역자공간분해%특정융합%자괄응
brain-computer interface (BCI)%motor imagery (MI)%hilbert-huang transform (HHT)%common spatial sub-space decomposition (CSSD )%feature fusion%adaptivity
为改善运动想象脑电信号特征提取的自适应性和实时性,提出一种基于希尔伯特-黄变换(HHT)与共空域子空间分解算法(CSSD )的特征提取方法(HCSSD )。在对脑电信号进行预处理的基础上,定义一种相对距离准则优选脑电极组合;计算脑电的Hilbert瞬时能量谱和边际能量谱,以获取脑电的时-频特征,并基于CSSD提取其空域特征,采用串行特征融合策略得到脑电的时-频-空特征;设计学习矢量量化神经网络分类器,实现脑电数据分类。在训练集与测试集间隔一周且减少导联数量的情况下,基于HCSSD对左手小指和舌头的运动想象ECoG脑电数据的平均识别率为92%。实验结果表明:HCSSD在增强特征提取方法的自适应性、改善实时性的同时,提高了脑电信号识别率,为便携式BCI系统在康复领域的应用创造了条件。
為改善運動想象腦電信號特徵提取的自適應性和實時性,提齣一種基于希爾伯特-黃變換(HHT)與共空域子空間分解算法(CSSD )的特徵提取方法(HCSSD )。在對腦電信號進行預處理的基礎上,定義一種相對距離準則優選腦電極組閤;計算腦電的Hilbert瞬時能量譜和邊際能量譜,以穫取腦電的時-頻特徵,併基于CSSD提取其空域特徵,採用串行特徵融閤策略得到腦電的時-頻-空特徵;設計學習矢量量化神經網絡分類器,實現腦電數據分類。在訓練集與測試集間隔一週且減少導聯數量的情況下,基于HCSSD對左手小指和舌頭的運動想象ECoG腦電數據的平均識彆率為92%。實驗結果錶明:HCSSD在增彊特徵提取方法的自適應性、改善實時性的同時,提高瞭腦電信號識彆率,為便攜式BCI繫統在康複領域的應用創造瞭條件。
위개선운동상상뇌전신호특정제취적자괄응성화실시성,제출일충기우희이백특-황변환(HHT)여공공역자공간분해산법(CSSD )적특정제취방법(HCSSD )。재대뇌전신호진행예처리적기출상,정의일충상대거리준칙우선뇌전겁조합;계산뇌전적Hilbert순시능량보화변제능량보,이획취뇌전적시-빈특정,병기우CSSD제취기공역특정,채용천행특정융합책략득도뇌전적시-빈-공특정;설계학습시량양화신경망락분류기,실현뇌전수거분류。재훈련집여측시집간격일주차감소도련수량적정황하,기우HCSSD대좌수소지화설두적운동상상ECoG뇌전수거적평균식별솔위92%。실험결과표명:HCSSD재증강특정제취방법적자괄응성、개선실시성적동시,제고료뇌전신호식별솔,위편휴식BCI계통재강복영역적응용창조료조건。
The adaptivity and real-time performance of feature extraction method are crucial in brain-computer interface . Based on Hilbert-Huang transform (HHT ) and common spatial subspace decomposition (CSSD ) algorithm ,a novel feature extrac-tion method ,denoted as HCSSD ,was proposed .Firstly ,the motor imagery electroencephalography (EEG )/ electrocorticography (ECoG ) was preprocessed ,and a relative distance criterion was defined to select the optimal combination of channels .Secondly , Hilbert instantaneous energy spectrum and marginal energy spectrum of EEG/ECoG were calculated to extract time feature and fre-quency feature respectively .Then CSSD was applied to extract spatial feature .Furthermore ,serial feature fusion strategy was adopted to obtain time-frequency-spatial feature .Finally ,learning vector quantization neural network was designed to classify the EEG/ECoG data .The average recognition accuracy was 92% for the left small finger and tongue motor imagery ECoG tasks .Experiment results show that HCSSD can enhance the adaptivity and real-time performance of feature extraction ,with the recognition accuracy im-proved .This method provides a new idea for the application of portable BCI system in rehabilitation field .