上海航天
上海航天
상해항천
AEROSPACE SHANGHAI
2012年
4期
22-26
,共5页
李朝霞%吴洪%王铁兵%王博
李朝霞%吳洪%王鐵兵%王博
리조하%오홍%왕철병%왕박
传感器调度%优化%多目标跟踪%低轨星座
傳感器調度%優化%多目標跟蹤%低軌星座
전감기조도%우화%다목표근종%저궤성좌
Sensor scheduling%Optimization%Multi-target tracking%Low earth orbit constellation
针对低轨星座目标跟踪传感器资源调度,基于函数优化和组合优化理论,建立了传感器资源优化调度模型,并设计了基于遗传算法-粒子群优化(GA-PSO)的优化调度算法。仿真结果表明,与现有的构造优化调度算法相比,该算法的性能更优,但运算量有所增加。
針對低軌星座目標跟蹤傳感器資源調度,基于函數優化和組閤優化理論,建立瞭傳感器資源優化調度模型,併設計瞭基于遺傳算法-粒子群優化(GA-PSO)的優化調度算法。倣真結果錶明,與現有的構造優化調度算法相比,該算法的性能更優,但運算量有所增加。
침대저궤성좌목표근종전감기자원조도,기우함수우화화조합우화이론,건립료전감기자원우화조도모형,병설계료기우유전산법-입자군우화(GA-PSO)적우화조도산법。방진결과표명,여현유적구조우화조도산법상비,해산법적성능경우,단운산량유소증가。
To deal with the problem of sensor resources scheduling in the low earth orbit (LEO) constellation, a sensor resources scheduling model was established based on combinatorial-optimizing and functional-optimizing in this paper. A novel sensor scheduling algorithm based on genetic algorithm-particle swarm optimization (GA-PSO) was proposed. The simulation results showed that the performance of this method was better than the existing constructive optimizing method although the calculation was more complex.