南昌工程学院学报
南昌工程學院學報
남창공정학원학보
JOURNAL OF NANCHANG INSTITUTE OF TECHNOLOGY
2012年
4期
6-9,23
,共5页
流体动力方程%时间周期解%Galerkin方法%Leray-Schauder不动点定理
流體動力方程%時間週期解%Galerkin方法%Leray-Schauder不動點定理
류체동력방정%시간주기해%Galerkin방법%Leray-Schauder불동점정리
fluid dynamic equation%time periodic solution%Galerkin method%Leray-Sehauder fixed pointtheorem
讨论一类带周期边界条件的流体动力方程,利用Galerkin方法构造时间周期解的近似解序列,通过先验估计和Leray-Schauder不动点定理证明近似解的收敛性,从而得到了流体动力方程时间周期解的存在性.
討論一類帶週期邊界條件的流體動力方程,利用Galerkin方法構造時間週期解的近似解序列,通過先驗估計和Leray-Schauder不動點定理證明近似解的收斂性,從而得到瞭流體動力方程時間週期解的存在性.
토론일류대주기변계조건적류체동력방정,이용Galerkin방법구조시간주기해적근사해서렬,통과선험고계화Leray-Schauder불동점정리증명근사해적수렴성,종이득도료류체동력방정시간주기해적존재성.
This paper discusses the fluid dynamic equation with a periodic boundary condition. By using the Galerkin method to construct the approximate sequence of time periodic solution, a priori estimate and Leray-Schauder fixed point theorem to prove the convergence of the approximate solution and the exist- ence of time periodic solution of the fluid dynamic equation are obtained.