黑龙江科技学院学报
黑龍江科技學院學報
흑룡강과기학원학보
JOURNAL OF HEILONGJIANG INSTITUTE OF SCIENCE & TECHNOLOGY
2012年
4期
348-353
,共6页
纳米切削%多尺度%单晶硅%相变
納米切削%多呎度%單晶硅%相變
납미절삭%다척도%단정규%상변
nanometic cutting%multiscale%single crystal silicon%phase transformation
通过在关键区域采用分子动力学(原子)描述、在远场弹性变形区域采用有限元(连续介质力学)描述建立了单晶硅纳米切削的多尺度模型。在边界区域,分子动力学和有限元互为彼此提供边界条件从而实现分子动力学区域和有限元区域的耦合。利用多尺度模型研究了单晶硅的纳米切削过程,结果表明纳米切削中工件以推挤的方式在刀具前方形成切屑。纳米切削中工件的原子键长分布、不同配位数的原子数变化和工件MD区域的原子构型的研究表明,纳米切削中发生了4配位的金刚石立方α-Si向6配位的β-Si结构的转变,即相变是纳米切削中硅的主要变形机制。该研究实现了单晶硅纳米切削的多尺度建模,为进一步探索纳米切削的微观机理提供了一种有效手段。
通過在關鍵區域採用分子動力學(原子)描述、在遠場彈性變形區域採用有限元(連續介質力學)描述建立瞭單晶硅納米切削的多呎度模型。在邊界區域,分子動力學和有限元互為彼此提供邊界條件從而實現分子動力學區域和有限元區域的耦閤。利用多呎度模型研究瞭單晶硅的納米切削過程,結果錶明納米切削中工件以推擠的方式在刀具前方形成切屑。納米切削中工件的原子鍵長分佈、不同配位數的原子數變化和工件MD區域的原子構型的研究錶明,納米切削中髮生瞭4配位的金剛石立方α-Si嚮6配位的β-Si結構的轉變,即相變是納米切削中硅的主要變形機製。該研究實現瞭單晶硅納米切削的多呎度建模,為進一步探索納米切削的微觀機理提供瞭一種有效手段。
통과재관건구역채용분자동역학(원자)묘술、재원장탄성변형구역채용유한원(련속개질역학)묘술건립료단정규납미절삭적다척도모형。재변계구역,분자동역학화유한원호위피차제공변계조건종이실현분자동역학구역화유한원구역적우합。이용다척도모형연구료단정규적납미절삭과정,결과표명납미절삭중공건이추제적방식재도구전방형성절설。납미절삭중공건적원자건장분포、불동배위수적원자수변화화공건MD구역적원자구형적연구표명,납미절삭중발생료4배위적금강석립방α-Si향6배위적β-Si결구적전변,즉상변시납미절삭중규적주요변형궤제。해연구실현료단정규납미절삭적다척도건모,위진일보탐색납미절삭적미관궤리제공료일충유효수단。
This paper features the development of Multiscale model of nanometric cutting of single crystal silicon by treating the critical region with MD(atomistic description) and capturing "far-field" elastic deformations using FE(continuum description).A HS region is used to couple the MD and FE regions.At the edge of HS region each description provides displacement boundary conditions for the other to realize the concurrent multiscale simulation.The investigation into Nanometric cutting process of single crystal silicon using the multiscale model shows that during nanometric cutting of single crystal silicon,the chip in front of the tool is formed by extrusion.Investigations of the distributions of atomic bond length,the variations of number of atoms with specified nearest number of neighbors,and the atomic configurations of MD region of the workpiece reveal that there occurs a phase transformation from four fold coordinated diamond cubic phase(α-Si) to the six fold coordinated β-Si during the nanometric cutting process,namely the conclusion that phase transformation is the dominant deformation mechanism of single crystal silicon during the nanometric cutting process.The study marked by the development of the multiscale model of nanometric cutting of single crystal silicon provides an effective tool for further exploring the microscale mechanisms of nanometic cutting.