德州学院学报
德州學院學報
덕주학원학보
JOURNAL OF DEZHOU UNIVERSITY
2012年
4期
5-8
,共4页
矩阵的秩%非零特征值个数%初等因子
矩陣的秩%非零特徵值箇數%初等因子
구진적질%비령특정치개수%초등인자
rank of matrix%number of nonzero eigenvalue%elementary factor
证明了n阶方阵A的秩r(A)与其非零特征值个数μ(A)之间的关系:r(A)≥μ(A).得出了矩阵A可逆和矩阵A可对角化是r(A)=μ(A)的两个充分条件;矩阵A没有形如xm(m2)的初等因子是r(A)=μ(A)的充分必要条件.
證明瞭n階方陣A的秩r(A)與其非零特徵值箇數μ(A)之間的關繫:r(A)≥μ(A).得齣瞭矩陣A可逆和矩陣A可對角化是r(A)=μ(A)的兩箇充分條件;矩陣A沒有形如xm(m2)的初等因子是r(A)=μ(A)的充分必要條件.
증명료n계방진A적질r(A)여기비령특정치개수μ(A)지간적관계:r(A)≥μ(A).득출료구진A가역화구진A가대각화시r(A)=μ(A)적량개충분조건;구진A몰유형여xm(m2)적초등인자시r(A)=μ(A)적충분필요조건.
The relationship between the rank of matrix and its number of nonzero eigenvalue is proved,that is r(A)≥u(A).Following conclusion are educed,the two sufficient condition for r(A)=u(A) are that matrix A is invertible and matrix A is diagonalizable,the Necessary and Sufficient Conditions for r(A)=u(A) is that there is not the elementary factor whose form is xm(m≥2) in elementary factors of matrix A.