智能系统学报
智能繫統學報
지능계통학보
CAAI TRANSACTIONS ON INTELLIGENT SYSTEMS
2013年
6期
505-511
,共7页
人脸识别%性别识别%全局特征%局部特征%特征融合
人臉識彆%性彆識彆%全跼特徵%跼部特徵%特徵融閤
인검식별%성별식별%전국특정%국부특정%특정융합
face recongnition%gender recongnition%overall feature%local feature%feature fusion
在人脸图像的性别识别方法研究中,存在同一个人既参与训练又参与测试的情况,所得结论有一定的局限性。针对此问题,建立相互独立的测试集和训练集。传统性别识别模型,受相关参数影响较大,稳定性有待提高,为此,提出一种基于特征融合的人脸图像性别识别方法,采用主成分分析和正交化的线性判别分析相结合的方法表述图像的全局特征,突破传统线性判别分析二分类时秩的限制,采用均衡的局部二值模式方法表述图像的局部特征,将少量全局特征和局部特征相融合,形成人脸图像的性别特征。支持向量机用于实现性别特征的分类。实验结果表明,此方法在具有一定稳定性的同时,能获得较高的识别率。
在人臉圖像的性彆識彆方法研究中,存在同一箇人既參與訓練又參與測試的情況,所得結論有一定的跼限性。針對此問題,建立相互獨立的測試集和訓練集。傳統性彆識彆模型,受相關參數影響較大,穩定性有待提高,為此,提齣一種基于特徵融閤的人臉圖像性彆識彆方法,採用主成分分析和正交化的線性判彆分析相結閤的方法錶述圖像的全跼特徵,突破傳統線性判彆分析二分類時秩的限製,採用均衡的跼部二值模式方法錶述圖像的跼部特徵,將少量全跼特徵和跼部特徵相融閤,形成人臉圖像的性彆特徵。支持嚮量機用于實現性彆特徵的分類。實驗結果錶明,此方法在具有一定穩定性的同時,能穫得較高的識彆率。
재인검도상적성별식별방법연구중,존재동일개인기삼여훈련우삼여측시적정황,소득결론유일정적국한성。침대차문제,건립상호독립적측시집화훈련집。전통성별식별모형,수상관삼수영향교대,은정성유대제고,위차,제출일충기우특정융합적인검도상성별식별방법,채용주성분분석화정교화적선성판별분석상결합적방법표술도상적전국특정,돌파전통선성판별분석이분류시질적한제,채용균형적국부이치모식방법표술도상적국부특정,장소량전국특정화국부특정상융합,형성인검도상적성별특정。지지향량궤용우실현성별특정적분류。실험결과표명,차방법재구유일정은정성적동시,능획득교고적식별솔。
In the research on the facial images gender recognition method , there exist cases where a person attends both training and testing , therefore, the conclusions attained are restrictive .In order to solve this problem , a mutu-ally independent testing set and training set have been established;the traditional gender recognition model is great-ly affected by the relevant parameters and the stability needs to be increased , therefore ,a novel gender recognition method utilizing facial images and based on feature fusion has been proposed .With this method , the analysis of the main components and the orthogonal linear distinguishing analysis are combined to describe the overall features of the facial image , the restriction of order in binary classification for traditional linear distinguishing analysis is bro -ken through , a balanced local binary value pattern method is applied to describe the local features of the image , and some of the overall features and the local features are fused to form the gender features of the facial image .The support vector machine is used for the classification of gender characteristics .The experimental results demonstrate that the proposed method ensures both a high recognition rate and robustness .