玉林师范学院学报
玉林師範學院學報
옥림사범학원학보
Journal of Yulin Teachers College
2012年
2期
2-9
,共8页
曲面%地图%整域扩张%偏微分方程%Laurent级数
麯麵%地圖%整域擴張%偏微分方程%Laurent級數
곡면%지도%정역확장%편미분방정%Laurent급수
surface%map%extension of integrate domain%partial differential equation%Laurent series
旨在讨论三个不同形式的偏微分方程在一个整域扩张上解的存在性、唯一性以及求解使得所有系数皆正项有限和的一种方法.虽然这些方程都是在研究地图在曲面上一种同构分类时发现的,对相关的组合,或代数结构却有些普遍意义.
旨在討論三箇不同形式的偏微分方程在一箇整域擴張上解的存在性、唯一性以及求解使得所有繫數皆正項有限和的一種方法.雖然這些方程都是在研究地圖在麯麵上一種同構分類時髮現的,對相關的組閤,或代數結構卻有些普遍意義.
지재토론삼개불동형식적편미분방정재일개정역확장상해적존재성、유일성이급구해사득소유계수개정항유한화적일충방법.수연저사방정도시재연구지도재곡면상일충동구분류시발현적,대상관적조합,혹대수결구각유사보편의의.
The purpose of this paper is to discuss the differential equations in three forms: surface no loop, surface no end and surface Euler for the well-definednes on the extension of integrate domain and their solutions in recursions of finite summations with positive terms. Although the foundation of these equations is established from counting the isomorphic classes for a variety of maps on surfaces, universal significance would be seen in a theory with a certain generality of combinatoric or algebraic configurations.