成都大学学报:自然科学版
成都大學學報:自然科學版
성도대학학보:자연과학판
Journal of Chengdu University (Natural Science)
2012年
2期
167-169
,共3页
负荷预测%神经网络%遗传算法
負荷預測%神經網絡%遺傳算法
부하예측%신경망락%유전산법
load forecasting%neural network%genetic algorithm
电力系统短期负荷预测的准确性对电力系统的实时运行调度至关重要.采用BP神经网络对电力系统负荷短期预测研究,根据影响电力系统的负荷因素如温度、天气等确定模型构成,同时利用遗传算法对BP神经网络进行优化.实例表明,利用遗传算法优化的BP神经网络在电力系统短期负荷预测中是有效的.
電力繫統短期負荷預測的準確性對電力繫統的實時運行調度至關重要.採用BP神經網絡對電力繫統負荷短期預測研究,根據影響電力繫統的負荷因素如溫度、天氣等確定模型構成,同時利用遺傳算法對BP神經網絡進行優化.實例錶明,利用遺傳算法優化的BP神經網絡在電力繫統短期負荷預測中是有效的.
전력계통단기부하예측적준학성대전력계통적실시운행조도지관중요.채용BP신경망락대전력계통부하단기예측연구,근거영향전력계통적부하인소여온도、천기등학정모형구성,동시이용유전산법대BP신경망락진행우화.실례표명,이용유전산법우화적BP신경망락재전력계통단기부하예측중시유효적.
The accuracy of short-tenn electric load forecasting is very important for real-time operation in the power system. BP neural network was used to study short-term electric load in this paper. Structure of the model was detemained according to the power system load factors of temperature and weather. Genetic algorithm was used to optimize the BP neural network. The examples show that genetic algorithm optimized by BP neural network is effective in the short-term load forecasting of power system.