粉末冶金材料科学与工程
粉末冶金材料科學與工程
분말야금재료과학여공정
POWDER METALLURGY MATERIALS SCIENCE AND ENGINEERING
2013年
6期
920-925
,共6页
王辉%贾文鹏%贺卫卫%刘咏%朱纪磊%黄瑜%赵培
王輝%賈文鵬%賀衛衛%劉詠%硃紀磊%黃瑜%趙培
왕휘%가문붕%하위위%류영%주기뢰%황유%조배
TiAl基合金%热等静压%包套锻造%高温力学性能
TiAl基閤金%熱等靜壓%包套鍛造%高溫力學性能
TiAl기합금%열등정압%포투단조%고온역학성능
TiAl based alloy%hot isostatic pressing%canned-forging%high temperature mechanical properties
采用等离子旋转电极雾化工艺制备名义成分为Ti-47Al-2Cr-2Nb-0.2W (原子分数,%)的预合金粉末,并经热等静压致密化得到TiAl基合金坯料。对热等静压坯体进行包套锻造,始锻温度为1150~1200℃,并控制应变速率为0.1~0.01 s-1,研究包套锻造后TiAl基合金的高温力学性能。结果表明,包套锻造后组织得到了一定程度的细化和均匀化,从而使合金的高温力学性能得到提高,但由于显微组织中有少量微裂纹存在,导致包套锻造TiAl基合金仍呈现较低的伸长率。TiAl基合金在进行高温拉伸时,首先在试样内部形成微裂纹或微孔,随拉伸过程的进行微裂纹或微孔扩展、连通,最终使试样断裂。
採用等離子鏇轉電極霧化工藝製備名義成分為Ti-47Al-2Cr-2Nb-0.2W (原子分數,%)的預閤金粉末,併經熱等靜壓緻密化得到TiAl基閤金坯料。對熱等靜壓坯體進行包套鍛造,始鍛溫度為1150~1200℃,併控製應變速率為0.1~0.01 s-1,研究包套鍛造後TiAl基閤金的高溫力學性能。結果錶明,包套鍛造後組織得到瞭一定程度的細化和均勻化,從而使閤金的高溫力學性能得到提高,但由于顯微組織中有少量微裂紋存在,導緻包套鍛造TiAl基閤金仍呈現較低的伸長率。TiAl基閤金在進行高溫拉伸時,首先在試樣內部形成微裂紋或微孔,隨拉伸過程的進行微裂紋或微孔擴展、連通,最終使試樣斷裂。
채용등리자선전전겁무화공예제비명의성분위Ti-47Al-2Cr-2Nb-0.2W (원자분수,%)적예합금분말,병경열등정압치밀화득도TiAl기합금배료。대열등정압배체진행포투단조,시단온도위1150~1200℃,병공제응변속솔위0.1~0.01 s-1,연구포투단조후TiAl기합금적고온역학성능。결과표명,포투단조후조직득도료일정정도적세화화균균화,종이사합금적고온역학성능득도제고,단유우현미조직중유소량미렬문존재,도치포투단조TiAl기합금잉정현교저적신장솔。TiAl기합금재진행고온랍신시,수선재시양내부형성미렬문혹미공,수랍신과정적진행미렬문혹미공확전、련통,최종사시양단렬。
TiAl pre-alloyed powder with nominal composition of Ti-47Al-2Cr-2Nb-0.2W (atom fraction, %) was prepared by plasma rotating electrode atomizing process, and then hot isostatic pressed to obtain high quality ingot. The high temperature mechanical properties of TiAl based alloys were studied after the ingot had been canned-forged with temperature in the range of 1 150~1 200℃and strain rate in the range of 0.1~0.01 s-1. The results show that the high temperature mechanical properties of such alloy increase due to the refining and homogenization of the microstructure after canned-forging, while the elongation is still not high enough due to the existence of micro-cracks. When high temperature tensile tests are conducted, the micro-cracks or micro-pores occurred in the test samples will expand and connect during tensile process which results in the rupture of the samples.