中国有色金属学报(英文版)
中國有色金屬學報(英文版)
중국유색금속학보(영문판)
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
2013年
12期
3643-3649
,共7页
白力静%寇钢%龚振瑶%赵志明
白力靜%寇鋼%龔振瑤%趙誌明
백력정%구강%공진요%조지명
磁控溅射%TiO2-ZnO薄膜%Zn与Ti摩尔比%微观结构%光催化
磁控濺射%TiO2-ZnO薄膜%Zn與Ti摩爾比%微觀結構%光催化
자공천사%TiO2-ZnO박막%Zn여Ti마이비%미관결구%광최화
magnetron sputtering%TiO2-ZnO thin films%Zn to Ti mole ratio%microstructure%photocatalytic
利用磁控溅射离子镀技术制备系列TiO 2-ZnO异质复合薄膜,通过调节溅射靶材电流的大小控制薄膜中n(Zn)/n(Ti)值。采用AFM﹑SEM﹑Raman和XPS手段表征薄膜的微观形貌和结构,并以甲基橙作为光催化污染物,研究n(Zn)/n(Ti)对TiO 2-ZnO复合薄膜微观结构及光催化性能的影响。结果表明:随着n(Zn)/n(Ti)的增大,复合薄膜的晶粒尺寸先减小而后增大,其粗糙度也先增大而后减小,且均在n(Zn)/n(Ti)为1/9.3时达到极值;n(Zn)/n(Ti)对薄膜中元素Ti和Zn的价态无明显影响,均以TiO 2和ZnO形式存在,但比值的大小影响薄膜退火后TiO 2中锐钛矿/金红石异质结的数量;n(Zn)/n(Ti)越大,复合薄膜的光响应范围及吸光度越大,其响应光谱最大可扩展150 nm,波长可至450 nm,但异质复合薄膜光催化效果与其并不对应,取决于ZnO对TiO 2复合薄膜微观结构的影响,当n(Zn)/n(Ti)为1/9.3时,薄膜的降解速率最大,光催化能力最好。
利用磁控濺射離子鍍技術製備繫列TiO 2-ZnO異質複閤薄膜,通過調節濺射靶材電流的大小控製薄膜中n(Zn)/n(Ti)值。採用AFM﹑SEM﹑Raman和XPS手段錶徵薄膜的微觀形貌和結構,併以甲基橙作為光催化汙染物,研究n(Zn)/n(Ti)對TiO 2-ZnO複閤薄膜微觀結構及光催化性能的影響。結果錶明:隨著n(Zn)/n(Ti)的增大,複閤薄膜的晶粒呎吋先減小而後增大,其粗糙度也先增大而後減小,且均在n(Zn)/n(Ti)為1/9.3時達到極值;n(Zn)/n(Ti)對薄膜中元素Ti和Zn的價態無明顯影響,均以TiO 2和ZnO形式存在,但比值的大小影響薄膜退火後TiO 2中銳鈦礦/金紅石異質結的數量;n(Zn)/n(Ti)越大,複閤薄膜的光響應範圍及吸光度越大,其響應光譜最大可擴展150 nm,波長可至450 nm,但異質複閤薄膜光催化效果與其併不對應,取決于ZnO對TiO 2複閤薄膜微觀結構的影響,噹n(Zn)/n(Ti)為1/9.3時,薄膜的降解速率最大,光催化能力最好。
이용자공천사리자도기술제비계렬TiO 2-ZnO이질복합박막,통과조절천사파재전류적대소공제박막중n(Zn)/n(Ti)치。채용AFM﹑SEM﹑Raman화XPS수단표정박막적미관형모화결구,병이갑기등작위광최화오염물,연구n(Zn)/n(Ti)대TiO 2-ZnO복합박막미관결구급광최화성능적영향。결과표명:수착n(Zn)/n(Ti)적증대,복합박막적정립척촌선감소이후증대,기조조도야선증대이후감소,차균재n(Zn)/n(Ti)위1/9.3시체도겁치;n(Zn)/n(Ti)대박막중원소Ti화Zn적개태무명현영향,균이TiO 2화ZnO형식존재,단비치적대소영향박막퇴화후TiO 2중예태광/금홍석이질결적수량;n(Zn)/n(Ti)월대,복합박막적광향응범위급흡광도월대,기향응광보최대가확전150 nm,파장가지450 nm,단이질복합박막광최화효과여기병불대응,취결우ZnO대TiO 2복합박막미관결구적영향,당n(Zn)/n(Ti)위1/9.3시,박막적강해속솔최대,광최화능력최호。
Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the current values of sputtering target. The effects of n(Zn)/n(Ti) on the microstructures of TiO2-ZnO films were investigated by SEM, AFM, Raman and XPS, and their photocatalytic decomposition of methyl orange solutions was evaluated. The results show that an increase in n(Zn)/n(Ti) typically results in a decrease in the grain size of composite films firstly and then an increase of grain size, while an increase in n(Zn)/n(Ti) leads to an increase in film roughness firstly and then a decrease in film roughness. Both grain size and roughness of TiO2-ZnO films reach the maximum and minimum at n(Zn)/n(Ti) of 1/9.3, respectively. The n(Zn)/n(Ti) shows little effect on the valences of Zn and Ti elements, which mainly exist in the form of TiO2 and ZnO phases. The n(Zn)/n(Ti) has influence on the amount of anatase/rutile TiO2 heterojunction in the film. With increase of the n(Zn)/n(Ti), the absorption intensity of the composite film increases and the absorption region extends to 450 nm, which is redshifted as much as 150 nm in comparison with the pure TiO2 films. However, the photocatalytic abilities of heterogeneous composite films do not depend on the n(Zn)/n(Ti) but rather on the microstructures of the TiO2-ZnO composite films. Degradation rate of the film reaches the maximum and the photocatalytic decomposition of pollutants works best when n(Zn)/n(Ti)=1:9.3.