冶金自动化
冶金自動化
야금자동화
METALLURGICAL INDUSTRY AUTOMATION
2012年
3期
18-23
,共6页
高炉%炉温预测%模糊C均值聚类%支持向量机
高爐%爐溫預測%模糊C均值聚類%支持嚮量機
고로%로온예측%모호C균치취류%지지향량궤
blast furnace%furnace temperature prediction%fuzzy C-mean clustering%support vector ma- chine
针对高炉炼铁智能控制专家系统中单一支持向量机(SVM)炉温预测模型的改进研究,提出一种基于模糊C均值聚类(FCM)的多支持向量机模型。首先运用模糊C均值聚类对模型训练集进行聚类划分,然后对每一类进行支持向量机的训练,建立相应的子模型,并对测试集中的同一样本点分别进行预测,以测试样本点的输入对应于每一类的隶属度为权值,进行加权求和,最终得到预测值。通过对在线采集的数据分析表明,基于FCM的多支持向量机模型比单一的支持向量机模型在多方面预测性能得到改善,连续预测100炉命中率达86%。
針對高爐煉鐵智能控製專傢繫統中單一支持嚮量機(SVM)爐溫預測模型的改進研究,提齣一種基于模糊C均值聚類(FCM)的多支持嚮量機模型。首先運用模糊C均值聚類對模型訓練集進行聚類劃分,然後對每一類進行支持嚮量機的訓練,建立相應的子模型,併對測試集中的同一樣本點分彆進行預測,以測試樣本點的輸入對應于每一類的隸屬度為權值,進行加權求和,最終得到預測值。通過對在線採集的數據分析錶明,基于FCM的多支持嚮量機模型比單一的支持嚮量機模型在多方麵預測性能得到改善,連續預測100爐命中率達86%。
침대고로련철지능공제전가계통중단일지지향량궤(SVM)로온예측모형적개진연구,제출일충기우모호C균치취류(FCM)적다지지향량궤모형。수선운용모호C균치취류대모형훈련집진행취류화분,연후대매일류진행지지향량궤적훈련,건립상응적자모형,병대측시집중적동일양본점분별진행예측,이측시양본점적수입대응우매일류적대속도위권치,진행가권구화,최종득도예측치。통과대재선채집적수거분석표명,기우FCM적다지지향량궤모형비단일적지지향량궤모형재다방면예측성능득도개선,련속예측100로명중솔체86%。
A kind of multiple support vector machines model based on fuzzy C-mean clustering (FCM) is proposed in order to improve the temperature prediction model with single support vector machine (SVM) in intelligent control expert system for blast furnace. At first, the training set is clas- sified into several groups by using of fuzzy C-mean clustering method. Then each group is trained through support vector machine and the corresponding sub-models are established. After that, the same sample in testing set is predicted separately and the memberships between each sample and each group are set as the weights. Finally, the predicted result is obtained by weighted sum. The analysis of on-line data shows that the multiple support vector machines model based on fuzzy C-mean clustering has. better prediction performance in many aspects compared with the single SVM model. The hit rate reaches 86% in consecutive 100 furnaces based on the proposed model.