江苏林业科技
江囌林業科技
강소임업과기
JOURNAL OF JIANGSU FORESTRY SCIENCE & TECHNOLOGY
2012年
3期
1-3,30
,共4页
郭晓君%吴沿友%竹为国%朱咏莉
郭曉君%吳沿友%竹為國%硃詠莉
곽효군%오연우%죽위국%주영리
红树林%BP神经网络%株高%预测
紅樹林%BP神經網絡%株高%預測
홍수림%BP신경망락%주고%예측
Mangrove%BP neural network%Tree height%Prediction
在分析测量数据的基础上,提取红树的平均基径、基径数、平均胸径、胸径数等特征参数,建立了预测红树株高的人工神经网络模型。采用Levenberg—Marquardt优化算法改进了BP神经网络算法;采用训练好的BP神经网络模型对距堤坝25,50,75m3个采样点的株高进行预测,预测值和实测值的均方根误差分别为0.0006,0.0022,0.0041,相关系数分别为0.99,0.95,0.94。结果表明利用BP神经网络对红树株高进行预测是可行的。
在分析測量數據的基礎上,提取紅樹的平均基徑、基徑數、平均胸徑、胸徑數等特徵參數,建立瞭預測紅樹株高的人工神經網絡模型。採用Levenberg—Marquardt優化算法改進瞭BP神經網絡算法;採用訓練好的BP神經網絡模型對距隄壩25,50,75m3箇採樣點的株高進行預測,預測值和實測值的均方根誤差分彆為0.0006,0.0022,0.0041,相關繫數分彆為0.99,0.95,0.94。結果錶明利用BP神經網絡對紅樹株高進行預測是可行的。
재분석측량수거적기출상,제취홍수적평균기경、기경수、평균흉경、흉경수등특정삼수,건립료예측홍수주고적인공신경망락모형。채용Levenberg—Marquardt우화산법개진료BP신경망락산법;채용훈련호적BP신경망락모형대거제패25,50,75m3개채양점적주고진행예측,예측치화실측치적균방근오차분별위0.0006,0.0022,0.0041,상관계수분별위0.99,0.95,0.94。결과표명이용BP신경망락대홍수주고진행예측시가행적。
Based on the test data analysis method, characteristic parameters of mangroves,i, e. average basal diameter, the number of basal diameter, average diameter at breast-high (DBH) , the number of DBH were extracted, and the artificial neural network model was developed to predict the height of mangroves. The back propagation(BP) algorithm was improved by using the Levenberg-Marquardt optimizing arithmetic. The heights of mangroves in the sampling points which are 25,50 and 75 m away from the dam were predicted using the trained BP neural network, standard errors are 0. 000 6,0. 002 2 and 0. 004 1 ,with the correlation coefficients of 0. 99,0. 95 and 0. 94. Results show that using BP neural network to predict the height of mangroves is feasible.