中国材料进展
中國材料進展
중국재료진전
MATERIALS CHINA
2012年
5期
40-56
,共17页
多孔钛及钛合金%制备%力学相容性%表面活化%生物活性
多孔鈦及鈦閤金%製備%力學相容性%錶麵活化%生物活性
다공태급태합금%제비%역학상용성%표면활화%생물활성
porous titanium and titanium alloys%preparation%mechanics compatibility%surface activation%biologicalactivity
医用多孔金属材料,特别是多孔钛及钛合金能够提供与人体骨组织相匹配的力学性能,并促进骨组织长人以提高其与骨的固定度,在人体硬组织修复与替换方面具有广泛的应用前景。重点围绕多孔钛及钛合金的制备方法及适用于其复杂孔隙结构的表面生物活化方法,综述了各种方法在多孔钛及钛合金上的应用现状。目前适用于多孔钛及钛合金制备的技术主要有粉末冶金法、钛纤维烧结法、自蔓延高温合成法、选区电子束熔化技术和选区激光熔化技术,适用于多孔钛及钛合金表面生物活化的技术主要有溶胶凝胶法、仿生矿化法、电化学沉积法和微弧氧化法。多孔钛及钛合金的力学相容性和表面生物活性需要同时满足临床要求,才能进一步扩大其在医学领域的应用范围。
醫用多孔金屬材料,特彆是多孔鈦及鈦閤金能夠提供與人體骨組織相匹配的力學性能,併促進骨組織長人以提高其與骨的固定度,在人體硬組織脩複與替換方麵具有廣汎的應用前景。重點圍繞多孔鈦及鈦閤金的製備方法及適用于其複雜孔隙結構的錶麵生物活化方法,綜述瞭各種方法在多孔鈦及鈦閤金上的應用現狀。目前適用于多孔鈦及鈦閤金製備的技術主要有粉末冶金法、鈦纖維燒結法、自蔓延高溫閤成法、選區電子束鎔化技術和選區激光鎔化技術,適用于多孔鈦及鈦閤金錶麵生物活化的技術主要有溶膠凝膠法、倣生礦化法、電化學沉積法和微弧氧化法。多孔鈦及鈦閤金的力學相容性和錶麵生物活性需要同時滿足臨床要求,纔能進一步擴大其在醫學領域的應用範圍。
의용다공금속재료,특별시다공태급태합금능구제공여인체골조직상필배적역학성능,병촉진골조직장인이제고기여골적고정도,재인체경조직수복여체환방면구유엄범적응용전경。중점위요다공태급태합금적제비방법급괄용우기복잡공극결구적표면생물활화방법,종술료각충방법재다공태급태합금상적응용현상。목전괄용우다공태급태합금제비적기술주요유분말야금법、태섬유소결법、자만연고온합성법、선구전자속용화기술화선구격광용화기술,괄용우다공태급태합금표면생물활화적기술주요유용효응효법、방생광화법、전화학침적법화미호양화법。다공태급태합금적역학상용성화표면생물활성수요동시만족림상요구,재능진일보확대기재의학영역적응용범위。
Biomedical porous metal materials, especially the porous titanium and titanium alloys, can provide the mechanical properties similar to human bone and promote growth of bone tissue into pores of the materials to enhance the fixation between their implants and bone at early periods of implantation, exhibiting a great potential for the application of human hard tissue repair and replacement. This paper focuses on the preparation methods and research progress of porous titanium and titanium alloys and their surface bio-activation technologies which are suitable for the complex pore structure. Nowadays, the main methods suitable for preparing porous titanium and titanium alloys include powder metallurgy (PM) , titanimn fibers sintering, self-propagating high-temperature synthesis (SHS), selective electron beam mehing (SEBM) and selective laser mehing ( SLM). Surface bio-activation technologies suitable for porous titanium and titanium alloys, including sol-gel processing, bionic solution, electrochemical deposition, and micro-arc oxidation, are also reviewed. As biomedical materials, both mechanical compatibility and surface bioactivity of porous titanium and titanium alloys must be achieved to meet clinical criteria.