南阳师范学院学报
南暘師範學院學報
남양사범학원학보
JOURNAL OF NANYANG TEACHERS COLLEGE
2012年
6期
15-17
,共3页
局部共形Khler流形%Vaisman流形%Lee形式
跼部共形Khler流形%Vaisman流形%Lee形式
국부공형Khler류형%Vaisman류형%Lee형식
locally conformal Khler manifold%Vaisman manifold%Lee form
利用Bochner公式和局部共形Khler流形理论知识,主要证明了满足某些条件的局部共形Khler流形一定为Vaisman流形.如:具有非负Ricci曲率且∫m(▽Bω)(B)*1=0;具有非负Rrcci曲率且dim(H1(M))=1等.同时,文中也给出一个判断非Vaisman流形的充分条件。
利用Bochner公式和跼部共形Khler流形理論知識,主要證明瞭滿足某些條件的跼部共形Khler流形一定為Vaisman流形.如:具有非負Ricci麯率且∫m(▽Bω)(B)*1=0;具有非負Rrcci麯率且dim(H1(M))=1等.同時,文中也給齣一箇判斷非Vaisman流形的充分條件。
이용Bochner공식화국부공형Khler류형이론지식,주요증명료만족모사조건적국부공형Khler류형일정위Vaisman류형.여:구유비부Ricci곡솔차∫m(▽Bω)(B)*1=0;구유비부Rrcci곡솔차dim(H1(M))=1등.동시,문중야급출일개판단비Vaisman류형적충분조건。
By applications of theory of locally conformally Khler manifold and Bochner formula,we prove that under some conditions,a locally conformal compact Khler manifold must be Vaisman manifold,for example :with ∫M(▽Bω)(B)*1=0 and non-negative Ricci curvature,with non-negative Ricci curvature and dim(H1(M))=1,and that one special method is given which is sufficient to prove non-Vaisman manifold.