重庆工商大学学报:自然科学版
重慶工商大學學報:自然科學版
중경공상대학학보:자연과학판
Journal of Chongqing Technology and Business University:Natural Science Edition
2012年
7期
23-27
,共5页
Fujita指标%变指标%非线性抛物方程%整体存在%爆破
Fujita指標%變指標%非線性拋物方程%整體存在%爆破
Fujita지표%변지표%비선성포물방정%정체존재%폭파
Fujita index%variable index%nonlinear parabolic equation%global existence%blow-up
主要研究了Cauchy问题:{ut=Δu+up(x)+uq+ku,(x,t)∈RN×(0,T) u(x,0)=u0(x),x∈R{N的非负解的爆破性质,其中01且初值u0(x)充分大时,解u(x,t)在有限时刻爆破;当max{p+,q}≤1时,解u(x,t)对任意初值u0(x)整体存在;在第4部分,讨论了方程的Fujita指标,并给出了解对任意初值爆破的几种情形.
主要研究瞭Cauchy問題:{ut=Δu+up(x)+uq+ku,(x,t)∈RN×(0,T) u(x,0)=u0(x),x∈R{N的非負解的爆破性質,其中01且初值u0(x)充分大時,解u(x,t)在有限時刻爆破;噹max{p+,q}≤1時,解u(x,t)對任意初值u0(x)整體存在;在第4部分,討論瞭方程的Fujita指標,併給齣瞭解對任意初值爆破的幾種情形.
주요연구료Cauchy문제:{ut=Δu+up(x)+uq+ku,(x,t)∈RN×(0,T) u(x,0)=u0(x),x∈R{N적비부해적폭파성질,기중01차초치u0(x)충분대시,해u(x,t)재유한시각폭파;당max{p+,q}≤1시,해u(x,t)대임의초치u0(x)정체존재;재제4부분,토론료방정적Fujita지표,병급출료해대임의초치폭파적궤충정형.
In this paper, we study the blow-up properties for nonnegative solutions to the following Cauchy problem :{ut=Δu+up(x)+uq+ku,(x,t)∈RN×(0,T) u(x,0)=u0(x),x∈R{Nhere 0 〈 p = inf p ( x ) ≤p (x)≤ sup p (x) = p + is a nonnegative continuous bounded function and 0 〈 k 〈 A ( where x x A is the first eigenvalue of -A with homogeneous Dirichlet boundary condition). We prove that there are solutions u(x,t) with blow-up in finite time if and only if max{p+ ,q} 〉 1 and when initial value Uo(X) is sufficiently big. when max lp ,q I ≤ 1, the solution u(x, t) shows blow-up properties in finite time to any initial value. In Section 4 ,we discuss Fujita indicators of this equation and give several conditions for the solutions blow-up with any initial value.