重庆工商大学学报:自然科学版
重慶工商大學學報:自然科學版
중경공상대학학보:자연과학판
Journal of Chongqing Technology and Business University:Natural Science Edition
2012年
8期
26-30
,共5页
边连通%笛卡尔乘积%边容错直径
邊連通%笛卡爾乘積%邊容錯直徑
변련통%적잡이승적%변용착직경
edge-connected%Cartesian product%edge fault-tolerant diameter
笛卡尔乘积是从若干特定的小网络构造大网络的有效方法,边容错直径是衡量一个网络可靠性和效用性的重要标准,研究了笛卡尔乘积网络的边容错直径,并且得到了一个相关的结果.对任何t1,t2≥1,若G1,G2分别是t1边连通的和t2边连通的,则它们的笛卡尔乘积图的边容错直径D't1+t2(G1×G2)≤D't1(G1)+D't2(G2)+1.并且,该不等式中的上界是最好的.
笛卡爾乘積是從若榦特定的小網絡構造大網絡的有效方法,邊容錯直徑是衡量一箇網絡可靠性和效用性的重要標準,研究瞭笛卡爾乘積網絡的邊容錯直徑,併且得到瞭一箇相關的結果.對任何t1,t2≥1,若G1,G2分彆是t1邊連通的和t2邊連通的,則它們的笛卡爾乘積圖的邊容錯直徑D't1+t2(G1×G2)≤D't1(G1)+D't2(G2)+1.併且,該不等式中的上界是最好的.
적잡이승적시종약간특정적소망락구조대망락적유효방법,변용착직경시형량일개망락가고성화효용성적중요표준,연구료적잡이승적망락적변용착직경,병차득도료일개상관적결과.대임하t1,t2≥1,약G1,G2분별시t1변련통적화t2변련통적,칙타문적적잡이승적도적변용착직경D't1+t2(G1×G2)≤D't1(G1)+D't2(G2)+1.병차,해불등식중적상계시최호적.
The method of Cartesian product is widely used as constructing large interconnection networks from many specific small networks. In this paper, we study the edge fault-tolerant diameter of Cartesian product graphs, which is an important measurement for reliability and efficiency of interconnection networks. Let G1 , G2 be t1-edge- connected graph and tE-edge-cOnnected graph respectively, then the edge fault-tolerant diameter of G1 × G2 has an optimal upper bound that D't1+t2(G1 ×G2) ≤D't1(G1) +D't2(G2) +1 ,where tI ,t2≥1.