电力系统自动化
電力繫統自動化
전력계통자동화
AUTOMATION OF ELECTRIC POWER SYSTEMS
2012年
13期
56-60
,共5页
刘自发%庞铖铖%魏建炜%何江涛
劉自髮%龐鋮鋮%魏建煒%何江濤
류자발%방성성%위건위%하강도
配电网%空间负荷预测%负荷密度指标%区间层次分析法%逼近理想解排序法
配電網%空間負荷預測%負荷密度指標%區間層次分析法%逼近理想解排序法
배전망%공간부하예측%부하밀도지표%구간층차분석법%핍근이상해배서법
distribution network%spatial load forecasting%load density index%interval analytic hierarchy process (IAHP) method%technique for order preference by similarity to ideal solution (TOPSIS) method
针对配电网空间负荷预测过程中负荷密度指标难以选取的问题,在层次分析法的基础上,提出了基于区间层次分析(IAHP)法和逼近理想解排序(TOPSIS)法的负荷密度指标选取方法。该方法通过用区间数代替点值,对传统的层次分析法进行改进,并将IAHP法和TOPSIS法有效融合,将专家经验和定量计算相结合,处理决策因素的不确定性和专家判断的模糊性,增强了对负荷密度指标预测结果的可信度。采用类内相似度方法进行负荷密度修正,进一步提高了预测结果的精度。实例计算表明,所提出的方法预测结果更优、误差更小。
針對配電網空間負荷預測過程中負荷密度指標難以選取的問題,在層次分析法的基礎上,提齣瞭基于區間層次分析(IAHP)法和逼近理想解排序(TOPSIS)法的負荷密度指標選取方法。該方法通過用區間數代替點值,對傳統的層次分析法進行改進,併將IAHP法和TOPSIS法有效融閤,將專傢經驗和定量計算相結閤,處理決策因素的不確定性和專傢判斷的模糊性,增彊瞭對負荷密度指標預測結果的可信度。採用類內相似度方法進行負荷密度脩正,進一步提高瞭預測結果的精度。實例計算錶明,所提齣的方法預測結果更優、誤差更小。
침대배전망공간부하예측과정중부하밀도지표난이선취적문제,재층차분석법적기출상,제출료기우구간층차분석(IAHP)법화핍근이상해배서(TOPSIS)법적부하밀도지표선취방법。해방법통과용구간수대체점치,대전통적층차분석법진행개진,병장IAHP법화TOPSIS법유효융합,장전가경험화정량계산상결합,처리결책인소적불학정성화전가판단적모호성,증강료대부하밀도지표예측결과적가신도。채용류내상사도방법진행부하밀도수정,진일보제고료예측결과적정도。실례계산표명,소제출적방법예측결과경우、오차경소。
In view of the load density selection problem in spatial load forecasting in the distribution network, a load density index selection method based on the interval analytic hierarchy process (IAHP) and technique for order preference by similarity to ideal solution (TOPSIS) methods is proposed. The method is an improvement on the traditional analytic hierarchy process for using interval data instead of dot data while effectively combining the theory of the IAHP method with the TOPSIS method, and the advantages of human expertise with quantitative calculation in rationally handling the uncertainties of decision factors and fuzziness of experts' judgment. This has enhanced the reliability of prediction results of load density. Finally, the method of similarity is used to correct the load density, further improving the precision of forecast. A case study shows that the method proposed has better prediction results and smaller errors.