模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2013年
10期
897-908
,共12页
黄国顺%曾凡智%陈广义%文翰
黃國順%曾凡智%陳廣義%文翰
황국순%증범지%진엄의%문한
严凸函数%知识粒度%相对粒度%条件信息熵
嚴凸函數%知識粒度%相對粒度%條件信息熵
엄철함수%지식립도%상대립도%조건신식적
Strictly Convex Function%Knowledge Granularity%Relative Granularity%Conditional Information Entropy
首次将严凸函数引入知识粒度研究中,提出基于严凸函数的知识粒度理论框架。根据该理论框架,给出一系列知识粒度度量函数,证明现有多种常见的知识粒度度量是该理论框架的特殊情形或变种。给出基于严凸函数的相对粒度定义,虽然对任意严凸函数导出的相对粒度不满足单调性,但对一些特殊严凸函数导出的相对粒度证明其单调性,并给出等号成立的条件。证明现有条件信息熵都是文中提出的严凸函数相对粒度的特殊情形,揭示它们的知识粒度本质。针对一致决策表,证明相对粒度与正区域不变等价,从而得到一致决策表代数约简的相对粒度判定方法。数值算例验证文中结论的正确性。
首次將嚴凸函數引入知識粒度研究中,提齣基于嚴凸函數的知識粒度理論框架。根據該理論框架,給齣一繫列知識粒度度量函數,證明現有多種常見的知識粒度度量是該理論框架的特殊情形或變種。給齣基于嚴凸函數的相對粒度定義,雖然對任意嚴凸函數導齣的相對粒度不滿足單調性,但對一些特殊嚴凸函數導齣的相對粒度證明其單調性,併給齣等號成立的條件。證明現有條件信息熵都是文中提齣的嚴凸函數相對粒度的特殊情形,揭示它們的知識粒度本質。針對一緻決策錶,證明相對粒度與正區域不變等價,從而得到一緻決策錶代數約簡的相對粒度判定方法。數值算例驗證文中結論的正確性。
수차장엄철함수인입지식립도연구중,제출기우엄철함수적지식립도이론광가。근거해이론광가,급출일계렬지식립도도량함수,증명현유다충상견적지식립도도량시해이론광가적특수정형혹변충。급출기우엄철함수적상대립도정의,수연대임의엄철함수도출적상대립도불만족단조성,단대일사특수엄철함수도출적상대립도증명기단조성,병급출등호성립적조건。증명현유조건신식적도시문중제출적엄철함수상대립도적특수정형,게시타문적지식립도본질。침대일치결책표,증명상대립도여정구역불변등개,종이득도일치결책표대수약간적상대립도판정방법。수치산례험증문중결론적정학성。
The strictly convex function is introduced into the research of knowledge granularity for the first time. Based on the strictly convex function, a theory framework for constructing knowledge granularity is proposed. A series of knowledge granularity measuring functions is derived under this framework. It is proved that the existing knowledge granularity measuring functions are the special cases or variations of knowledge granularity measures which are derived by strictly convex functions. The definition of the relative knowledge granularity based on strictly convex function is given. Its monotonicity is proved for some special strictly convex functions and the corresponding equality conditions are provided, although it does not hold for general strictly convex functions. It is proved that the existing two conditional information entropies are the special forms of the proposed relative knowledge granularity. Their knowledge granularity essence is revealed. For a consistent decision table, it is proved that the relative knowledge granularity is equivalent to positive region for each other. Therefore, the attribute reduction judgment method of algebraic reduction is presented by the relative granularity in consistent decision table. The correctness of the proposed conclusions is showed by a numerical example.