中国岩溶
中國巖溶
중국암용
CARSOLOGICA SINICA
2013年
4期
391-397
,共7页
曾成%杨睿%杨明明%胡君春%武贵华%樊宇红
曾成%楊睿%楊明明%鬍君春%武貴華%樊宇紅
증성%양예%양명명%호군춘%무귀화%번우홍
云南丽江%黑龙潭泉群%岩溶泉成因%断流%人工神经网络
雲南麗江%黑龍潭泉群%巖溶泉成因%斷流%人工神經網絡
운남려강%흑룡담천군%암용천성인%단류%인공신경망락
Lijiang City,Yunnan Province%the Heilongtan spring group%cause of karst spring%zero flow%artificial neural network
近年来,云南省丽江市著名景点黑龙潭泉群断流频发,这将严重威胁丽江市旅游业的可持续发展。为了正确认识黑龙潭泉群断流的原因,并掌握其发生的规律,本文在对该泉群的水文地质条件、降水量和断流的关系进行分析的基础上,对该泉群的断流情况开展了人工神经网络模拟研究。本文发现黑龙潭泉群属于非全排型山前断裂溢流岩溶泉;年降水量不足与该泉群的断流具有一定的因果关系;构建了网络拓扑结构为6-13-3的 BP 人工神经网络模型对黑龙潭泉群的不同断流情况进行了模拟,该模型以前期降水量、温度与湿度作为输入向量参数,以1953-2002年的数据作为训练样本,以2003-2012年的数据作为模型检验样本,检验结果与实际情况吻合度约为90%,表明该模型可以较好地模拟黑龙潭泉群的断流情况。
近年來,雲南省麗江市著名景點黑龍潭泉群斷流頻髮,這將嚴重威脅麗江市旅遊業的可持續髮展。為瞭正確認識黑龍潭泉群斷流的原因,併掌握其髮生的規律,本文在對該泉群的水文地質條件、降水量和斷流的關繫進行分析的基礎上,對該泉群的斷流情況開展瞭人工神經網絡模擬研究。本文髮現黑龍潭泉群屬于非全排型山前斷裂溢流巖溶泉;年降水量不足與該泉群的斷流具有一定的因果關繫;構建瞭網絡拓撲結構為6-13-3的 BP 人工神經網絡模型對黑龍潭泉群的不同斷流情況進行瞭模擬,該模型以前期降水量、溫度與濕度作為輸入嚮量參數,以1953-2002年的數據作為訓練樣本,以2003-2012年的數據作為模型檢驗樣本,檢驗結果與實際情況吻閤度約為90%,錶明該模型可以較好地模擬黑龍潭泉群的斷流情況。
근년래,운남성려강시저명경점흑룡담천군단류빈발,저장엄중위협려강시여유업적가지속발전。위료정학인식흑룡담천군단류적원인,병장악기발생적규률,본문재대해천군적수문지질조건、강수량화단류적관계진행분석적기출상,대해천군적단류정황개전료인공신경망락모의연구。본문발현흑룡담천군속우비전배형산전단렬일류암용천;년강수량불족여해천군적단류구유일정적인과관계;구건료망락탁복결구위6-13-3적 BP 인공신경망락모형대흑룡담천군적불동단류정황진행료모의,해모형이전기강수량、온도여습도작위수입향량삼수,이1953-2002년적수거작위훈련양본,이2003-2012년적수거작위모형검험양본,검험결과여실제정황문합도약위90%,표명해모형가이교호지모의흑룡담천군적단류정황。
Zero flow of the Heilongtan spring group that is famous scenery in Lijiang,Yunnan Province fre-quently occurs recently,which severely threatening the sustainable development of Lijiang tourism.In order to know the real reason for zero flow of the Heilongtan spring group and its occurrence regularity,hydrogeo-logical conditions and correlation between precipitation and zero flow of the spring group are analyzed sys-tematically,and a simulation based on artificial neural network model is made also.It is found that the Hei-longtan spring group is an incomplete-drainage overflow karst spring at the piedmont formed by fractures. There is causality between the annual precipitation deficit and the zero flow of the Heilongtan spring group. Finally,a BP artificial neural network model with 6 - 13 - 3 network topology of the Heilongtan spring group’s zero flow is established.The model uses antecedent precipitation,air temperature and humidity as input vector parameters to simulate different conditions of the Heilongtan spring group’s zero flow.Training samples come from data from 1 953 to 2002 ,and testing samples come from 2003 to 2012 in the model.At last,it is found that the testing results are coincide with real situation to great extent.